Prediction of the residual state in 304 austenitic steel after laser shock peening – Effects of plastic deformation and martensitic phase transformation

2016 ◽  
Vol 111-112 ◽  
pp. 24-34 ◽  
Author(s):  
Miroslav Halilovič ◽  
Sally Issa ◽  
Mathias Wallin ◽  
Håkan Hallberg ◽  
Matti Ristinmaa
2004 ◽  
Vol 71 (5) ◽  
pp. 713-723 ◽  
Author(s):  
Hongqiang Chen ◽  
Jeffrey W. Kysar ◽  
Y. Lawrence Yao

Electron backscatter diffraction (EBSD) is used to investigate crystal lattice rotation caused by plastic deformation during high-strain rate laser shock peening in single crystal aluminum and copper sample on 110¯ and (001) surfaces. New experimental methodologies are employed which enable measurement of the in-plane lattice rotation under approximate plane-strain conditions. Crystal lattice rotation on and below the microscale laser shock peened sample surface was measured and compared with the simulation result obtained from FEM analysis, which account for single crystal plasticity. The lattice rotation measurements directly complement measurements of residual strain/stress with X-ray micro-diffraction using synchrotron light source and it also gives an indication of the extent of the plastic deformation induced by the microscale laser shock peening.


2011 ◽  
Vol 84-85 ◽  
pp. 471-475 ◽  
Author(s):  
Wei Feng He ◽  
Yu Qin Li ◽  
Xiang Fan Nie ◽  
Rui Jun Liu ◽  
Qi Peng Li

In this paper, the microstructure and hardness of Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy with and without laser shock peening (LSP) were examined and compared. The titanium alloy samples were laser shock peened with different layers at the same power density. The microscopic structure after LSP are tested and analyzed by SEM and TEM. The results indicated that LSP changed the microstructure evidently. After 3 layers laser shock peening, there are nanocrystallization in the LSP zone. The shock wave provided high strain rate deformation and generated high-density dislocations in the material. Multiple severe plastic deformation caused by 3 to 5 LSP layers helped to rearrange the resultant dislocation, to form dislocation networks, leading to the formation of nanocrystallites. On the other hand, the microhardness across the polished surfaces of the titanium materials with and without LSP was measured. It is obvious that the laser shock peening improved the microhardness of the Ti-5Al-2Sn-2Zr-4Mo-4Cr for about 16% at the surface, and the affected depth is about 300 microns from the surface.


2015 ◽  
Vol 664 ◽  
pp. 314-325 ◽  
Author(s):  
Philipp Malte Hilgendorff ◽  
Andrei Grigorescu ◽  
Martina Zimmermann ◽  
Claus Peter Fritzen ◽  
Hans Jürgen Christ

The experimental observation of the microstructural deformation behavior of a metastable austenitic stainless steel tested at the real VHCF limit indicates that plastic deformation is localized and accumulated in shear bands and martensite formation occurs at grain boundaries and intersecting shear bands. Based on these observations a microstructure-sensitive model is proposed that accounts for the accumulation of plastic deformation in shear bands (allowing irreversible plastic sliding deformation) and considers nucleation and growth of deformation-induced martensite at intersecting shear bands. The model is numerically solved using the two-dimensional (2-D) boundary element method. By using this method, real simulated 2-D microstructures can be reproduced and the microstructural deformation behavior can be investigated within the microstructural morphology. Results show that simulation of shear band evolution is in good agreement with experimental observations and that prediction of sites of deformation-induced martensite formation is possible in many cases. The analysis of simulated shear stresses in most critical slip systems under the influence of plastic deformation due to microstructural changes contributes to a better understanding of the interaction of plastic deformation in shear bands with deformation-induced martensitic phase transformation in the VHCF regime.


2013 ◽  
Vol 30 (3) ◽  
pp. 036201 ◽  
Author(s):  
Yan-Peng Wei ◽  
Bing-Chen Wei ◽  
Xi Wang ◽  
Guang-Yue Xu ◽  
Lei Li ◽  
...  

Author(s):  
M. Hashsish ◽  
A. Chillman ◽  
M. Ramulu

An experimental study was conducted to explore the high-pressure waterjet (WJ) peening at 600MPa on the surface integrity and texture of metals. The concept of larger droplet size and multiple droplet impacts resulting from an ultra high-pressure waterjet (UHPWJ) was used to explore and develop the peening process. A combination of microstructure analysis, microhardness measurements, and profilometry were used in determining the depth of plastic deformation and surface texture that result from the surface treatment process. It was found that waterjet peening at 600MPa induces plastic deformation to greater depths in the sub-surface layer of metals than laser shock peening. The degree of plastic deformation and the state of material surface were found to be strongly dependent on the peening conditions and desired surface roughness. Based on these first investigation results, water peening at 600MPa may serve as a new method for introducing compressive residual stresses in engineering components.


2020 ◽  
Vol 47 ◽  
pp. 450-457
Author(s):  
Bojan Starman ◽  
Håkan Hallberg ◽  
Mathias Wallin ◽  
Matti Ristinmaa ◽  
Nikolaj Mole ◽  
...  

Author(s):  
Hongqiang Chen ◽  
Jeffrey W. Kysar ◽  
Y. Lawrence Yao ◽  
Youneng Wang

Different experimental techniques and 3D FEM simulations are employed to characterize and analyze the three dimensional plastic deformation and residual strain/stress distribution for single crystal Aluminum under microscale laser shock peening assuming finite geometry. Single pulse shock peening at individual locations was studied. X-ray micro-diffraction techniques based on a synchrotron light source affords micron scale spatial resolution and is used to measure the residual stress spatial distribution along different crystalline directions on the shocked surface. Crystal lattice rotation due to plastic deformation is also measured with electron backscatter diffraction (EBSD). The result is experimentally quantified and compared with the simulation result obtained from FEM analysis. The influence of the finite size effect, crystalline orientation are investigated using single crystal plasticity in FEM analysis. The result of the 3D simulations of a single shock peened indentation are compared with the FEM results for a shocked line under 2D plain strain deformation assumption. The prediction of overall character of the deformation and lattice rotation fields in three dimensions will lay the ground work for practical application of μLSP.


Sign in / Sign up

Export Citation Format

Share Document