Characterization of the thermal performance of multi piezoelectric fans for cooling a semi-cylindrical concave surface

Author(s):  
Xinjun Li ◽  
Weiwei Chen ◽  
Shihua Lu
2018 ◽  
Vol 40 (9-10) ◽  
pp. 784-793 ◽  
Author(s):  
Hossein Alijani ◽  
Barbaros Çetin ◽  
Yiğit Akkuş ◽  
Zafer Dursunkaya

2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Mark Kimber ◽  
Suresh V. Garimella

Piezoelectric fans are vibrating cantilevers actuated by a piezoelectric material and can provide heat transfer enhancement while consuming little power. Past research has focused on feasibility and performance characterization of a single fan, while arrays of such fans, which have important practical applications, have not been widely studied. This paper investigates the heat transfer achieved using arrays of cantilevers vibrating in their first resonant mode. This is accomplished by determining the local convection coefficients due to the two piezoelectric fans mounted near a constant heat flux surface using infrared thermal imaging. The heat transfer performance is quantified over a wide range of operating conditions, including vibration amplitude (7.5–10 mm), distance from heat source (0.01–2 times the fan amplitude), and pitch between fans (0.5–4 times the amplitude). The convection patterns observed are strongly dependent on the fan pitch, with the behavior resembling a single fan for small fan pitch and two isolated fans at a large pitch. The area-averaged thermal performance of the fan array is superior to that of a single fan, and correlations are developed to describe this enhancement in terms of the governing parameters. The best thermal performance is obtained when the fan pitch is 1.5 times its vibration amplitude.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1740 ◽  
Author(s):  
Yifeng Fu ◽  
Guofeng Cui ◽  
Kjell Jeppson

The design, fabrication, and use of a hotspot-producing and temperature-sensing resistance thermometer for evaluating the thermal properties of low-dimensional materials are described in this paper. The materials that are characterized include one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene and boron nitride films. The excellent thermal performance of these materials shows great potential for cooling electronic devices and systems such as in three-dimensional (3D) integrated chip-stacks, power amplifiers, and light-emitting diodes. The thermometers are designed to be serpentine-shaped platinum resistors serving both as hotspots and temperature sensors. By using these thermometers, the thermal performance of the abovementioned emerging low-dimensional materials was evaluated with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document