scholarly journals Erratum to “Effects of build orientation and heat treatment on microstructure, mechanical and corrosion properties of Al6061 aluminium parts built by cold spray additive manufacturing process” International Journal of Mechanical Sciences 204 (2021) 106526.

Author(s):  
Novana Hutasoit ◽  
Muhammad Awais Javed ◽  
Rizwan Abdul Rahman Rashid ◽  
Scott Wade ◽  
Suresh Palanisamy
2019 ◽  
pp. 145-150
Author(s):  
T. O. Soshina ◽  
V. R. Mukhamadyarovа

The defects destroy the integrity of the enamel, and the paper examines the influence of the physical-mechanical and corrosion properties of frits and heat treatment on the defectiveness of the enamel coating. The surface defects were scanned by electron microscope. It has been established that the defectiveness of enamel coatings depends on the melting index, temperature coefficient of linear expansion, surface tension of the frits, and heat treatment conditions. When burning rate of the enamel coating decreases, the fine-meshed structure of the enamel changes, and the size of the defects decreases.


2021 ◽  
Vol 5 ◽  
pp. 18-27
Author(s):  
A. A. Selivanov ◽  
◽  
K. V. Antipov ◽  
Yu. S. Oglodkova ◽  
A. S. Rudchenko ◽  
...  

The results of the development of a new alloy of the Al – Mg – Si system of the 6xxx series, which received the V-1381 grade, are presented. The influence of the composition and modes of heat treatment on the mechanical and corrosion properties of sheets with a thickness of 1,0 and 3,0 mm, manufactured under the conditions of FSUE “VIAM”, was investigated. Average level of sheet properties: UTS = 410 MPa, YTS = 360 MPa, El = 11.5 %; fatigue crack growth (dl/dN) = 0,59 mm/kcycle at ΔK = 18,6 MPa·m1/2, intergranular corrosion ≤ 0,15 mm, exfoliation corrosion 4 points. It was found that the structure of the sheets is recrystallized, the main strengthening phase is the coherent matrix β’(Mg2Si)-phase evenly distributed in the volume of grains with a high density. There is also a heterogeneous origin of β′-phase on dislocations and dispersoids. At grain boundaries there are zones free from emissions with a width of 15 – 20 nm. Dispersoids of various morphologies are observed in the tested samples. Temperature and heat values of phase transformations in ingots and sheets are determined and established liquidus and solidus points. The sheet weldability was evaluated by automatic argon-arc welding and the critical rate of deformation of the weld metal during crystallization was determined, at which no cracks were formed in it. Laser welding mode has been developed to ensure optimal formation of geometric parameters of the weld.


2019 ◽  
Vol 44 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Isiaka Oluwole Oladele ◽  
Davies Babatunde Alonge ◽  
Timothy Olakunle Betiku ◽  
Emmanuel Ohiomomo Igbafen ◽  
Benjamin Omotayo Adewuyi

The effect of Post Weld Heat Treatment (PWHT) on the microstructure, mechanical and corrosion properties of low carbon steel have been investigated. The welding process was conducted on butt joint using Manual Metal Arc Welding (MMAW) techniques at a welding voltage of 23 V and welding current of 110 A with the use of E6013 and 3.2 mm diameter as filler material. Heat treatment through full annealing was carried out on the welded low carbon steel. The mechanical properties (hardness, impact toughness and tensile properties) of the AW and PWHT samples were determined. The microstructure of the AW and PWHT samples was characterized by means of an optical microscopy. Corrosion behavior of the sample was studied in3.5 wt.% NaCl environment using potentiodynamic polarization method. The results showed that the AW samples has good combination of mechanical and corrosion properties. The microstructure revealed fine grains of pearlite randomly dispersed in the ferrite for the AW base metal (BM) sample while agglomerated and fine particle of epsilon carbide or cementite randomly dispersed on the ferritic phase of the heat affected zone (HAZ) and weld metal (WM), of the AW, respectively. The PWHT samples shows that the annealing process allow diffusion and growth of the fine grains into partial coarse grains of ferrite and pearlite which did not encourage improvement of the properties. Therefore, it was concluded that the welding parameters put in place during welding of the low carbon steel are optimum for quality weld.


2021 ◽  
Vol 63 (9) ◽  
pp. 791-796
Author(s):  
Lei Tian ◽  
Zhanqi Gao ◽  
Yongdian Han

Abstract To investigate the influence of post-weld heat treatment on the microstructure and corrosion properties of super duplex stainless steel welded joints, multi-layer multi-pass welding of 2507 super duplex stainless steel by tungsten argon arc welding was performed using an ER2594 welding wire. The microstructures of the welded joints before and after post-weld heat treatment at 1150 °C, 1170 °C and 1190 °C were observed, and the mechanical and corrosion properties were tested. The post-weld heat treatment changed the austenite content and morphology of the welded joint and improved the corrosion resistance of different parts of the weld metal. The choice of various solution heat treatment temperatures affected the change in austenite content in the weld zone and the degree of diffusion and homogenization of the alloy elements. After post-weld heat treatment at 1170 °C, the two-phase ratios in each area of the weld were the most suitable and uniform, and the overall mechanical and corrosion properties of the joint were more uniform.


2021 ◽  
Vol 1046 ◽  
pp. 65-70
Author(s):  
Solène Lhabitant ◽  
Alain Toufine ◽  
Anis Hor

Directed energy deposition (DED) is an Additive Manufacturing process deposing fused metal powder on a preexisting substrate. This document shows the influence of heat treatment on P295GH deposit made by DED, for hybridization process. The heat treatment must reduce the macroscopic differences between the rolled substrate and the deposited DED material. The experimental plan has been defined around AC3 temperature, according to P295GH existing literature. XRD analysis, hardness measurements and metallographic inspections have been performed on samples before and after heat treatment. XRD analysis and hardness measurements have shown an isotropic material. The as-built microstructure is ferritic and acicular, but coarsens after the heat treatment. The study promotes a heat treatment at 800°C during 3 hours to obtain the best compromise between properties, impact on the substrate and differences with the rolled substrate.


Sign in / Sign up

Export Citation Format

Share Document