scholarly journals Identification and antifungal susceptibility testing of dermatophytes

2021 ◽  
Vol 39 ◽  
pp. S102
Author(s):  
P. Neeshma ◽  
Sindhusuta Das ◽  
Laxmisha Chandrashekar ◽  
Rakesh Singh
2020 ◽  
Vol 41 (S1) ◽  
pp. s105-s105
Author(s):  
Romina Bromberg ◽  
Vivian Leung ◽  
Meghan Maloney ◽  
Anu Paranandi ◽  
David Banach

Background: Morbidity and mortality associated with invasive fungal infections and concerns of emerging antifungal resistance have highlighted the importance of optimizing antifungal therapy among hospitalized patients. Little is known about antifungal stewardship (AFS) practices among acute-care hospitals. We sought to assess AFS activities within Connecticut and to identify opportunities for improvement. Methods: An electronic survey assessing AFS practices was distributed to infectious disease physicians or pharmacy antibiotic stewardship program leaders in Connecticut hospitals. Survey questions evaluated AFS activities based on antibiotic stewardship principles, including several CDC Core Elements. Questions assessed antifungal restriction, prospective audit and feedback practices, antifungal utilization measurements, and the perceived utility of a local or statewide antifungal antibiogram. Results: Responses were received from 15 respondents, which represented 20 of 31 hospitals (65%); these hospitals made up the majority of the acute-care hospitals in Connecticut. Furthermore, 18 of these hospitals (58%) include antifungals in their stewardship programs. Also, 16 hospitals (52%) conduct routine review of antifungal ordering and provide feedback to providers for some antifungals, most commonly for amphotericin B, voriconazole, micafungin, isavuconazole, and flucytosine. All hospitals include guidance on intravenous (IV) to oral (PO) conversions, when appropriate. Only 14 of hospitals (45%) require practitioners to document indication(s) for systemic antifungal use. Most hospitals (17, 55%) provide recommendations for de-escalation of therapy in candidemia, though only 4 (13%) have institutional guidelines for candidemia treatment, and only 11 hospital mandates an infectious diseases consultation for candidemia. Assessing outcomes pertaining to antifungal utilization is uncommon; only 8 hospitals (26%) monitor days of therapy and 5 (16%) monitor antifungal expenditures. Antifungal susceptibility testing on Candida bloodstream isolates is performed routinely at 6 of the hospitals (19%). Most respondents (19, 95%) support developing an antibiogram for Candida bloodstream isolates at the statewide level. Conclusions: Although AFS interventions occur in Connecticut hospitals, there are opportunities for enhancement, such as providing institutional guidelines for candidemia treatment and mandating infectious diseases consultation for candidemia. The Connecticut Department of Public Health implemented statewide Candida bloodstream isolate surveillance in 2019, which includes antifungal susceptibility testing. The creation of a statewide antibiogram for Candida bloodstream infections is underway to support empiric antifungal therapy.Funding: NoneDisclosures: None


Dermatology ◽  
2021 ◽  
pp. 1-20
Author(s):  
Julia J. Shen ◽  
Maiken C. Arendrup ◽  
Shyam Verma ◽  
Ditte Marie L. Saunte

<b><i>Background:</i></b> Dermatophytosis is commonly encountered in the dermatological clinics. The main aetiological agents in dermatophytosis of skin and nails in humans are <i>Trichophyton</i> (<i>T</i>.) <i>rubrum</i>, <i>T. mentagrophytes</i> and <i>T. interdigitale</i> (former <i>T. mentagrophytes-</i>complex). Terbinafine therapy is usually effective in eradicating infections due to these species by inhibiting their squalene epoxidase (SQLE) enzyme, but increasing numbers of clinically resistant cases and mutations in the SQLE gene have been documented recently. Resistance to antimycotics is phenotypically determined by antifungal susceptibility testing (AFST). However, AFST is not routinely performed for dermatophytes and no breakpoints classifying isolates as susceptible or resistant are available, making it difficult to interpret the clinical impact of a minimal inhibitory concentration (MIC). <b><i>Summary:</i></b> PubMed was systematically searched for terbinafine susceptibility testing of dermatophytes on October 20, 2020, by two individual researchers. The inclusion criteria were <i>in vitro</i> terbinafine susceptibility testing of <i>Trichophyton (T.) rubrum</i>, <i>T. mentagrophytes</i> and <i>T. interdigitale</i> with the broth microdilution technique. The exclusion criteria were non-English written papers. Outcomes were reported as MIC range, geometric mean, modal MIC and MIC<sub>50</sub> and MIC<sub>90</sub> in which 50 or 90% of isolates were inhibited, respectively. The reported MICs ranged from &#x3c;0.001 to &#x3e;64 mg/L. The huge variation in MIC is partly explained by the heterogeneity of the <i>Trichophyton</i> isolates, where some originated from routine specimens (wild types) whereas others came from non-responding patients with a known SQLE gene mutation. Another reason for the great variation in MIC is the use of different AFST methods where MIC values are not directly comparable. High MICs were reported particularly in isolates with SQLE gene mutation. The following SQLE alterations were reported: F397L, L393F, L393S, H440Y, F393I, F393V, F415I, F415S, F415V, S443P, A448T, L335F/A448T, S395P/A448T, L393S/A448T, Q408L/A448T, F397L/A448T, I121M/V237I and H440Y/F484Y in terbinafine-resistant isolates.


1999 ◽  
Vol 45 (10) ◽  
pp. 871-874 ◽  
Author(s):  
Eric Dannaoui ◽  
Florence Persat ◽  
Marie-France Monier ◽  
Elisabeth Borel ◽  
Marie-Antoinette Piens ◽  
...  

A comparative study of visual and spectrophotometric MIC endpoint determinations for antifungal susceptibility testing of Aspergillus species was performed. A broth microdilution method adapted from the National Committee for Clinical Laboratory Standards (NCCLS) was used for susceptibility testing of 180 clinical isolates of Aspergillus species against amphotericin B and itraconazole. MICs were determined visually and spectrophotometrically at 490 nm after 24, 48, and 72h of incubation, and MIC pairs were compared. The agreement between the two methods was 99% for amphotericin B and ranged from 95 to 98% for itraconazole. It is concluded that spectrophotometric MIC endpoint determination is a valuable alternative to the visual reference method for susceptibility testing of Aspergillus species.Key words: antifungal, susceptibility testing, Aspergillus, spectrophotometric reading.


2021 ◽  
Vol 17 ◽  
Author(s):  
Zarifeh Adampour ◽  
Malihe Hasanzadeh ◽  
Hossein Zarrinfar ◽  
Maryam Nakhaei ◽  
Monika Novak Babič

Introduction: Endometrial cancer is one of the most common malignancies of the female genital tract, which can be serious or life-threatening. Microbial infections can be one of the underlying causes of this type of cancer. Case Presentation: The present study describes the isolation of Pichia fermentans (Candida firmentaria var. firmentaria) from the vaginal secretions of a 61-year-old woman affected by endometrial cancer. She reported abdominal pain and vaginal discharge for 3 months, and had a history of diabetes, hypertension, Deep Vein Thrombosis (DVT), and Acute Myeloid Leukemia (AML). The isolated yeast was identified based on nuclear ribosomal internal transcribed spacer (ITS1-ITS2 rDNA) sequence analysis. The in vitro antifungal susceptibility testing showed a higher effect for ketoconazole against P. fermentans than fluconazole, itraconazole and voriconazole. Conclusion: Correct differentiation between P. fermentans and other yeast should be considered. The in vitro antifungal susceptibility testing is recommended for rare yeast, and will help the physicians in providing the best treatment.


Sign in / Sign up

Export Citation Format

Share Document