A methodology for highly accurate results of direct numerical simulations: Drag force in dense gas–solid flows at intermediate Reynolds number

2014 ◽  
Vol 62 ◽  
pp. 73-86 ◽  
Author(s):  
Y. Tang ◽  
S.H.L. Kriebitzsch ◽  
E.A.J.F. Peters ◽  
M.A. van der Hoef ◽  
J.A.M. Kuipers
2019 ◽  
Vol 879 ◽  
pp. 147-167 ◽  
Author(s):  
Nikolaos Beratlis ◽  
Elias Balaras ◽  
Kyle Squires

It is well established that dimples accelerate the drag crisis on a sphere. The result of the early drag crisis is a reduction of the drag coefficient by more than a factor of two when compared to a smooth sphere at the same Reynolds number. However, when the drag coefficients for smooth and dimpled spheres in the post-critical regime are compared, the latter is higher by a factor of two to three. To understand the origin of this behaviour, we conducted direct numerical simulations of the flow around a dimpled sphere, which is similar to commercially available golf balls, in the post-critical regime. By comparing the results to those for a smooth sphere, it is found that dimples, although effective in accelerating the drag crisis, impose a local drag penalty, which contributes significantly to the overall drag force. This finding challenges the broadly accepted view that dimples only indirectly affect the drag force on a sphere by energizing the near-wall flow and delaying global separation.


2016 ◽  
Vol 806 ◽  
pp. 165-204 ◽  
Author(s):  
Corentin Herbert ◽  
Raffaele Marino ◽  
Duane Rosenberg ◽  
Annick Pouquet

We study the partition of energy between waves and vortices in stratified turbulence, with or without rotation, for a variety of parameters, focusing on the behaviour of the waves and vortices in the inverse cascade of energy towards the large scales. To this end, we use direct numerical simulations in a cubic box at a Reynolds number $Re\approx 1000$, with the ratio between the Brunt–Väisälä frequency $N$ and the inertial frequency $f$ varying from $1/4$ to 20, together with a purely stratified run. The Froude number, measuring the strength of the stratification, varies within the range $0.02\leqslant Fr\leqslant 0.32$. We find that the inverse cascade is dominated by the slow quasi-geostrophic modes. Their energy spectra and fluxes exhibit characteristics of an inverse cascade, even though their energy is not conserved. Surprisingly, the slow vortices still dominate when the ratio $N/f$ increases, also in the stratified case, although less and less so. However, when $N/f$ increases, the inverse cascade of the slow modes becomes weaker and weaker, and it vanishes in the purely stratified case. We discuss how the disappearance of the inverse cascade of energy with increasing $N/f$ can be interpreted in terms of the waves and vortices, and identify the main effects that can explain this transition based on both inviscid invariants arguments and viscous effects due to vertical shear.


Author(s):  
Lance R. Collins ◽  
Hui Meng ◽  
Aruj Ahluwalia ◽  
Lujie Cao ◽  
Gang Pan

Particle collisions driven by turbulent fluctuations play a key role in such diverse problems as cloud formation, aerosol powder manufacturing and inhalation drug therapy to name a few. In all of these examples (and many others) turbulent fluctuations increase the rate of collisions relative to the background collision rate driven by Brownian motion. Furthermore, turbulence can spontaneously generate very large fluctuations in the particle concentration field. This “clustering” is caused by the inertial mismatch between the heavy particles and the lighter surrounding gas; vortices in the flow “centrifuge” the heavier particles out of vortex cores and into the straining regions that lie in between the vortices. Because collision is a binary process, concentration fluctuations further enhance the turbulent coagulation rate by as much as two orders of magnitude. An effect of this size must be accounted for in a rational model of turbulent coagulation. Sundaram & Collins (J. Fluid Mech. 1997) showed that the radial distribution function (RDF) of the particle population, evaluated at contact, precisely corrects the collision kernel for clustering. Subsequent work has explored the dependence of the RDF on the system parameters (e.g., particle size, concentration, response time and Reynolds number) using direct numerical simulations. These results have improved our understanding and ability to predict the effect of the first three parameters; however, owing to the limited range of Reynolds number that can be reached in a numerical simulation, questions remain over the scaling of the RDF with Reynolds number. This is a critical issue for high-Reynolds-number applications such as cloud physics, where values of the Reynolds number can be 1–2 orders of magnitude greater than can be simulated. We will present our highest Reynolds number simulations to date and show our attempts to resolve this issue. Recently, the ability to measure three-dimensional particle positions using holography has been realized (e.g., Meng & Pu, J. Opt. Soc. Am. 2003). With holography, the optical image that is produced contains fringes that, upon inverting the laser, reproduce the original image in three dimensions. The hologram can then be scanned using a digital camera to obtain the particle positions. An important consideration with this study is the need to differentiate individual particles. We developed a search algorithm that locates particle centers, even in the presence of optical aberations and speckle noise. The algorithm has been used to obtain the first experimental RDF measurements to date. Thus far we see good agreement between the experimentally obtained RDF and the simulations. Besides validating the simulations, experiments can span a much broader range of Reynolds numbers, providing critical data that may help resolve the open questions associated with this parameter.


2008 ◽  
Vol 600 ◽  
pp. 403-426 ◽  
Author(s):  
P. BURATTINI ◽  
S. LEONARDI ◽  
P. ORLANDI ◽  
R. A. ANTONIA

The turbulent flow in a two-dimensional channel with roughness on one wall is investigated using experiments and direct numerical simulations (DNS). The elements have a square cross-section with height k=0.1H (H is the channel half-width) and a streamwise spacing of 4k. The Reynolds number Reτr, based on the friction velocity at the rough wall and H, is in the range 300–1100. Particular attention is given to the rough-wall side. Measured turbulence intensities, length scales, leading terms in the turbulent kinetic energy budget, and velocity spectra are compared with those obtained from the DNS. Close agreement is found, yielding support for the simplifying assumptions in the experiment (notably local isotropy and Taylor's hypothesis) and the adequacy of the spatial resolution in the simulation. Overall, the profiles of the Reynolds normal stresses on the roughness side are almost independent of Reτr, when normalized by outer variables. Energy spectra at different locations above the rough wall collapse well at high wavenumbers, when normalized by Kolmogorov scales. In contrast to previous studies, a region of negative energy production near the location of the maximum streamwise velocity is not observed. Comparison with a smooth-wall channel, at similar values of the friction-velocity Reynolds number, highlights differences only in the streamwise velocity component near the wall.


2001 ◽  
Vol 427 ◽  
pp. 241-274 ◽  
Author(s):  
P. K. YEUNG

A study of the Lagrangian statistical properties of velocity and passive scalar fields using direct numerical simulations is presented, for the case of stationary isotropic turbulence with uniform mean scalar gradients. Data at higher grid resolutions (up to 5123 and Taylor-scale Reynolds number 234) allow an update of previous velocity results at lower Reynolds number, including intermittency and dimensionality effects on vorticity time scales. The emphasis is on Lagrangian scalar time series which are new to the literature and important for stochastic mixing models. The variance of the ‘total’ Lagrangian scalar value (ϕ˜+, combining contributions from both mean and fluctuations) grows with time, with the velocity–scalar cross-correlation function and fluid particle displacements playing major roles. The Lagrangian increment of ϕ˜+ conditioned upon velocity and scalar fluctuations is well represented by a linear regression model whose parameters depend on both Reynolds number and Schmidt number. The Lagrangian scalar fluctuation is non-Markovian and has a longer time scale than the velocity, which is due to the strong role of advective transport, and is in contrast to results in an Eulerian frame where the scalars have shorter time scales. The scalar dissipation is highly intermittent and becomes de-correlated in time more rapidly than the energy dissipation. Differential diffusion for scalars with Schmidt numbers between 1/8 and 1 is characterized by asymmetry in the two-scalar cross-correlation function, a shorter time scale for the difference between two scalars, as well as a systematic decrease in the Lagrangian coherency spectrum up to at least the Kolmogorov frequency. These observations are consistent with recent work suggesting that differential diffusion remains important in the small scales at high Reynolds number.


2001 ◽  
Vol 436 ◽  
pp. 283-320 ◽  
Author(s):  
T. HAWA ◽  
Z. RUSAK

Bifurcation analysis, linear stability study, and direct numerical simulations of the dynamics of a two-dimensional, incompressible, and laminar flow in a symmetric long channel with a sudden expansion with right angles and with an expansion ratio D/d (d is the width of the channel inlet section and D is the width of the outlet section) are presented. The bifurcation analysis of the steady flow equations concentrates on the flow states around a critical Reynolds number Rec(D/d) where asymmetric states appear in addition to the basic symmetric states when Re [ges ] Rec(D/d). The bifurcation of asymmetric states at Rec has a pitchfork nature and the asymmetric perturbation grows like √Re − Rec(D/d). The stability analysis is based on the linearized equations of motion for the evolution of infinitesimal two-dimensional disturbances imposed on the steady symmetric as well as asymmetric states. A neutrally stable asymmetric mode of disturbance exists at Rec(D/d) for both the symmetric and the asymmetric equilibrium states. Using asymptotic methods, it is demonstrated that when Re < Rec(D/d) the symmetric states have an asymptotically stable mode of disturbance. However, when Re > Rec(D/d), the symmetric states are unstable to this mode of asymmetric disturbance. It is also shown that when Re > Rec(D/d) the asymmetric states have an asymptotically stable mode of disturbance. The direct numerical simulations are guided by the theoretical approach. In order to improve the numerical simulations, a matching with the asymptotic solution of Moffatt (1964) in the regions around the expansion corners is also included. The dynamics of both small- and large-amplitude disturbances in the flow is described and the transition from symmetric to asymmetric states is demonstrated. The simulations clarify the relationship between the linear stability results and the time-asymptotic behaviour of the flow. The current analyses provide a theoretical foundation for previous experimental and numerical results and shed more light on the transition from symmetric to asymmetric states of a viscous flow in an expanding channel. It is an evolution from a symmetric state, which loses its stability when the Reynolds number of the incoming flow is above Rec(D/d), to a stable asymmetric equilibrium state. The loss of stability is a result of the interaction between the effects of viscous dissipation, the downstream convection of perturbations by the base symmetric flow, and the upstream convection induced by two-dimensional asymmetric disturbances.


Sign in / Sign up

Export Citation Format

Share Document