Dynamic characteristics of the face gear transmission system based on a rotor-shaft-bearing model with multiple nodes

Author(s):  
Jianxiong Dong ◽  
Jinyuan Tang ◽  
Zehua Hu
Author(s):  
Jinyuan Tang ◽  
Zehua Hu ◽  
Siyu Chen ◽  
Duncai Lei

The effects of directional rotation radius and transmission error excitation on the nonlinear dynamic characteristics of face gear transmission system are analyzed. First, the accurate time-varying mesh stiffness is calculated using finite element method, and the nonlinear motion equation of the system under static transmission error excitation is proposed. The frequency response curve, time history curve, dynamic mesh force curve and dynamic factor curve are given, and the phenomena of jump, multiple solutions and tooth impact are observed. The numerical results show that the effect of amplitude variation of directional rotation radius on the dynamic characteristics of face gear pair is less conspicuous than that of transmission error but actually existing. The amplitude of the dynamic response of face gear pair reduces to some extent with the uniform distribution of the loading area through enlarging the amplitude variation of directional rotation radius. The static transmission error excitation should be reduced to perfect the transmission property. The system is in periodic motion most of the time, and tooth impact occurs only near [Formula: see text] . Since its dynamic property at low velocity and high velocity is good, the system should get through the resonant area quickly in work.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Zehua Hu ◽  
Jinyuan Tang ◽  
Siyu Chen ◽  
Duncai Lei

The effect of mesh stiffness on the dynamic response of face gear transmission system combining with backlash nonlinearity is studied. First, a nonlinear time-varying (NLTV) and a nonlinear time-invariant (NLTI) dynamic models of face gear transmission system with backlash nonlinearity are formulated. The 6DOF motion equations of the face gear pair considering the mesh stiffness, backlash, contact damping and supporting stiffness are proposed. Second, the effect of mesh stiffness on the dynamic response of the face gear drive system is analyzed with the numerical method, where the mesh stiffness is expressed in two patterns as time-varying form and time-invariant form. According to the comparative study, some significant phenomena as bifurcation, chaos, tooth separation and occurrence of multijump are detected. The results show that different forms of mesh stiffness generate an obvious change on the dynamic mesh force.


2012 ◽  
Vol 215-216 ◽  
pp. 974-977 ◽  
Author(s):  
Li Ming Lian ◽  
Gui Min Liu

The dynamic performance of asymmetric involute gear transmission system is analyzed by the MSC.ADAMS software during the paper. By comparative analyzed with the traditional dynamic characteristics of symmetrical involute straight gear transmission, it can be summarized that the asymmetric involute gear transmission system has better vibration characteristics in the course of transmission.


2019 ◽  
Vol 25 (10) ◽  
pp. 1653-1662 ◽  
Author(s):  
Wei Li ◽  
Jingdong Sun ◽  
Jiapeng Yu

The two-parallel shaft gear transmission system is the most widely used system among the multi-stage gear transmission systems. The dynamic characteristics analysis of the two-parallel shaft gear transmission system is of great significance for nonlinear behavior research and noise control of gear transmission systems. This paper establishes a dynamic model and equations for the two-parallel shaft gear transmission system. According to the solution to the dynamic equations, the effects are studied of parameters such as speed, damping, modulus, and precision on the dynamic characteristics of the system. The results provide the basis for reducing vibration and noise control in multi-stage gear transmission systems.


2012 ◽  
Vol 215-216 ◽  
pp. 1067-1070
Author(s):  
Kang Huang ◽  
Jue Li ◽  
Xin Jin ◽  
Qi Chen

For the study of nonlinear dynamic characteristics of a pair of gears in an external torque under gear meshing error excitation, we will establish two degrees of freedom nonlinear torsional vibration model. The use of Matlab / Simulink for numerical simulation solves the nonlinear dynamic model of the gear gap. Study the dynamic characteristics of the system in a certain domain of parameters on external incentive conditions, as well as external motivation of gear transmission system dynamic characteristics influence. The results have important practical value for future engineering practice on gear transmission system's dynamic design, and have important theoretical significance for complex gear transmission system dynamics study.


2013 ◽  
Vol 321-324 ◽  
pp. 9-12
Author(s):  
Wen Jun Yang ◽  
Hui Qun Yuan ◽  
Zhi Min Huang ◽  
Li Se Yang

Based on gear transmission system of 1.5MW wind turbine, dynamic characteristics are analyzed under the effect of both external and internal incentives. Using lumped parameter method, the dynamic model involving 6 degrees of freedom for every helical gear is established with taking the time-varying mesh stiffness and error into account. The results show that the transmission system is quasi-periodic under the operating speed, and the vibration direction of gear with a large amplitude is obtained. This study can be referred to the engineering applications.


2013 ◽  
Vol 834-836 ◽  
pp. 1273-1280
Author(s):  
Ze Hua Hu ◽  
Jin Yuan Tang ◽  
Si Yu Chen

The periodic and chaotic dynamic responses of face gear transmission system considering time-varying mesh stiffness and backlash nonlinearity are studied. Firstly, a nonlinear time-varying dynamic model of face gear pair is developed and the motion equations are presented, the real accurate mesh stiffness is obtained by applying Finite element approach. Then, the dynamic equations are solved using Runge-Kutta numerical integral method and bifurcation diagrams are presented and analyzed. The stability properties of steady state responses are illustrated with Floquet multipliers and Lyapunov exponents. The results show that a process of periodic-chaotic-periodic motion exists with the dimensionless pinion rotational frequency as control parameters. The analysis can be a reference to avoid the chaotic motion and unstable periodic motion through choosing suitable rotational frequency.


2012 ◽  
Vol 268-270 ◽  
pp. 1063-1066 ◽  
Author(s):  
Zhi Wang ◽  
Qing Chen ◽  
Jia Chun Lin ◽  
Li Li Yang

According to the gear meshing theory, the tooth surface equation of orthogonal face gear is derived and the mathematical model is established. Also the model was provided for simulating the bevel gear transmission system concerning the time variant stiffness and face gears errors under static load and cyclic loads. Through the model the computerized analysis of speed, angle and acceleration of gear real tooth surface could be accomplished. Rattle as discussed under condition of different static loads and the constant cyclic loads.


Sign in / Sign up

Export Citation Format

Share Document