Molecular phylogeny of the Bothriocephalidea (Cestoda): molecular data challenge morphological classification

2015 ◽  
Vol 45 (12) ◽  
pp. 761-771 ◽  
Author(s):  
Jan Brabec ◽  
Andrea Waeschenbach ◽  
Tomáš Scholz ◽  
D. Timothy J. Littlewood ◽  
Roman Kuchta
2008 ◽  
Vol 98 (5) ◽  
pp. 499-507 ◽  
Author(s):  
H.C. Zhang ◽  
G.X. Qiao

AbstractThree traditional tribes of Fordini, Pemphigini and Eriosomatini comprise Pemphiginae, and there are two subtribes in Fordini and Pemphigini, respectively. Most of the species in this subfamily live heteroecious holocyclic lives with distinct primary host specificity. The three tribes of Pemphigini (except Prociphilina), Eriosomatini and Fordini use three families of plants, Salicaceae (Populus), Ulmaceae (Ulums) and Anacardiaceae (Pistacia and Rhus), as primary hosts, respectively, and form galls on them. Therefore, the Pemphigids are well known as gall makers, and their galls can be divided into true galls and pseudo-galls in type. We performed the first molecular phylogenetic study of Pemphiginae based on molecular data (EF-1α sequences). Results show that Pemphiginae is probably not a monophylum, but the monophyly of Fordini is supported robustly. The monophyly of Pemphigini is not supported, and two subtribes in it, Pemphigina and Prociphilina, are suggested to be raised to tribal level, equal with Fordini and Eriosomatini. The molecular phylogenetic analysis does not show definite relationships among the four tribes of Pemphiginae, as in the previous phylogenetic study based on morphology. It seems that the four tribes radiated at nearly the same time and then evolved independently. Based on this, we can speculate that galls originated independently four times in the four tribes, and there is no evidence to support that true galls are preceded by pseudo-galls, as in the case of thrips and willow sawflies.


2021 ◽  
Author(s):  
Jinfen Han ◽  
Fangru NAN ◽  
Jia FENG ◽  
Junping LV ◽  
Qi LIU ◽  
...  

Methods for morphological classification and molecular phylogeny of freshwater red algae


2007 ◽  
Vol 76 (1) ◽  
pp. 35-54 ◽  
Author(s):  
Francesca Benzoni ◽  
Fabrizio Stefani ◽  
Jaroslaw Stolarski ◽  
Michel Pichon ◽  
Guillaume Mitta ◽  
...  

The phylogenetic relationships of the scleractinian genus Psammocora with the other genera traditionally included in the family Siderastreidae and some Fungiidae are assessed based on combined skeletal and molecular data. P. explanulata differs from the other examined congeneric species (P. contigua, P. digitata, P. nierstraszi , P. profundacella, P. superficialis, and P. stellata) in possessing interstomatous septa between adult corallites, costae, and in having continuous buttress-like structures joining septal faces (i.e., fulturae) which typically occur in fungiids. These characters are shared with Coscinaraea wellsi but not with the remainder of the examined siderastreids (the congeneric C. columna, and Anomastraea irregularis, Horastrea indica, Pseudosiderastrea tayamai, Siderastrea savignyana) whose septa are interconnected by typical synapticulae. Most of the examined species form septa with distinct transverse groups of centers of calcification, a biomineralization pattern typical of the Robusta clade. The observations on skeletal structures corroborate the results of the ITS2 and 5.8S molecular phylogeny. C. wellsi and P. explanulata are phylogenetically very close to each other and show closer genetic affinity with the examined Fungiidae (Halomitra pileus, Herpolitha limax, Fungia paumotensis, and Podabacia crustacea) than with the other species in the genera Psammocora and Coscinaraea, or with any other siderastreid. Our results show that neither Psammocora nor Coscinaraea are monophyletic genera. The high genetic distances between the species of Siderastreidae, especially between Pseudosiderastrea tayamai and Siderastrea savignyana on one side and the other genera on the other, suggest a deep divergence in the phylogenetic structure of the family.


Zootaxa ◽  
2010 ◽  
Vol 2662 (1) ◽  
pp. 28 ◽  
Author(s):  
PETER E. STÜBEN ◽  
JONAS J. ASTRIN

A molecular phylogeny of the western Palearctic weevil genus Kyklioacalles Stüben, 1999 is presented, combining two mitochondrial genes (CO1 and 16S) in a Bayesian analysis. Based on molecular data, the validity of the subspecies Kyklioacalles punctaticollis punctaticollis (Lucas, 1849) and Kyklioacalles punctaticollis meteoricus (Meyer, 1909) is discussed and the morphological differentiation of the endophalli and known distributions of both subspecies are verified. Glaberacalles subg. n. (formerly Kyklioacalles punctaticollis-group) and two new species are described, Kyklioacalles atlasicus sp.n. from Morocco and Kyklioacalles plantapilosus sp.n. from Spain. Kyklioacalles berberi (Stüben, 2005), comb. n. and Kyklioacalles olcesei (Tournier, 1873) comb. n. are transferred from Acalles Schoenherr. The molecular results further advocate a transfer of Onyxacalles pyrenaeus (Boheman, 1844) to Kyklioacalles; however this is not supported by morphological evidence. Kyklioacalles almadensis Stüben, 2004 syn. n. (Spain) is synonymized with Kyklioacalles bupleuri Stüben, 2004 (Tunisia). A catalogue of all 40 (sub-)species of Kyklioacalles is given and a key of the species of the subgenus Glaberacalles is presented.


2020 ◽  
Vol 34 (1) ◽  
pp. 101 ◽  
Author(s):  
Ryutaro Goto ◽  
James Monnington ◽  
Marija Sciberras ◽  
Isao Hirabayashi ◽  
Greg W. Rouse

Echiura (commonly called spoon worms) are derived annelids that have an unsegmented sausage-shaped body with a highly extensible anterior end (i.e. a proboscis). Echiura currently contains two superfamilies: Echiurioidea (with Echiuridae, Urechidae and Thalassematidae) and Bonellioidea (with Bonelliidae, and Ikedidae). Ikedidae contains only Ikeda, which is distinctive in having a huge trunk, a highly elongate proboscis with stripes or dots, and numerous gonoducts. A recent molecular phylogeny of Echiura recovered Ikedidae as the sister group to Bonelliidae. However, due to relatively low support values for the monophyly of Bonelliidae, this relationship remains problematic. In this study, we reinvestigated the relationship of Bonelliidae and Ikedidae using an expanded dataset with more taxa and genes. In contrast to the previous results, our analyses strongly support that Ikeda is nested within Bonelliidae due to the placement of Maxmuelleria. On the basis of this result, we synonymise Ikedidae with Bonelliidae and transfer Ikeda to the latter, the diagnosis of which is amended. In addition, we synonymise Urechidae with its sister group Echiuridae because they share the synapomorphy of having anal chaetae rings. Furthermore, considering that recent phylogenetic studies have consistently recovered Echiura as the sister group to Capitelliidae within Annelida, we drop the rank of the echiuran clade to family-level and propose a revised classification: Thalassematidae with two subfamilies, Thalassematinae (with two tribes Echiurini and Thalassematini) and Bonelliinae. In addition, we identified a sample collected from the deep sea (~1820 m) of Monterey Bay, California, based on its molecular data. This terminal unexpectedly formed the sister group to the eight genera of Thalassematini, most members of which are inhabitants of littoral zones.


2015 ◽  
Vol 46 (5) ◽  
pp. 411-430 ◽  
Author(s):  
Morgan D. Jackson ◽  
Stephen A. Marshall ◽  
Jeffrey H. Skevington

DNA molecular data are used to generate a phylogeny for the micropezid subfamily Taeniapterinae. Thirty-two taeniapterine species were sampled, including 10 of the 20 New World genera recognized by Steyskal, as well as one genus formerly treated as a synonym of Poecilotylus Hennig (Hemichaeta Steyskal). Five species from the Micropezinae were included as outgroups. A total DNA dataset of 4705 bp, including mitochondrial genes (12S and cytochrome c oxidase I (COI)) and nuclear coding genes (wingless and CAD), was analysed using maximum parsimony and Bayesian inference. The genus Taeniaptera Macquart was found to be non-monophyletic with respect to the remainder of the Taeniapterini analysed here. Taeniaptera is restricted to the Taeniaptera trivittata Macquart species group, Mitromyia Cresson is resurrected to contain the Taeniaptera grata (Wulp) species group, and Paragrallomyia Hendel is resurrected to contain most species previously considered Taeniaptera. Poecilotylus is recognized as a paraphyletic group awaiting further research.


2010 ◽  
Vol 55 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Charlotte Havermans ◽  
Zoltán T. Nagy ◽  
Gontran Sonet ◽  
Claude De Broyer ◽  
Patrick Martin

Zootaxa ◽  
2012 ◽  
Vol 3490 (1) ◽  
pp. 63 ◽  
Author(s):  
ANGELICA CROTTINI ◽  
AURÉLIEN MIRALLES ◽  
FRANK GLAW ◽  
D. JAMES HARRIS ◽  
ALEXANDRA LIMA ◽  
...  

We describe a new Brookesia species from a forest fragment located 13 km south of Ambalavao in the southern part ofMadagascar's central high plateau. Brookesia brunoi sp. nov. is one of the few arid-adapted Brookesia species inhabitingdeciduous forests on the western slope of the central high plateau of the island (around 950 m a.s.l.). So far the species hasonly been observed in the private Anja Reserve. The species belongs to the Brookesia decaryi group formed by arid-adapt-ed Brookesia species of western Madagascar: B. bonsi Ramanantsoa, B. perarmata (Angel), B. brygooi Raxworthy &Nussbaum and B. decaryi Angel. Brookesia brunoi differs from the other four species of the group by a genetic divergenceof more than 17.6% in the mitochondrial ND2 gene, and by a combination of morphological characters: (1) nine pairs oflaterovertebral pointed tubercles, (2) absence of enlarged pointed tubercles around the vent, (3) presence of poorly definedlaterovertebral tubercles along the entire tail, (4) by the configuration of its cephalic crest, and (5) hemipenial morphology.Based on our molecular phylogeny this species is sister to a clade containing B. brygooi, B. decaryi, and probably B. bonsifor which no ND2 sequences were available. Our molecular data also confirm the presence of a divergent mitochondriallineage in the Tsingy de Bemaraha, which might be assigned to either B. bonsi or B. decaryi, and point to the need of more research on this population.


2005 ◽  
Vol 1 (2) ◽  
pp. 227-230 ◽  
Author(s):  
Michael S.Y Lee

A molecular phylogeny was used to refute the marine scenario for snake origins. Nuclear gene sequences suggested that snakes are not closely related to living varanid lizards, thus also apparently contradicting proposed relationships between snakes and marine mosasaurs (usually considered to be varanoids). However, mosasaurs share derived similarities with both snakes and living varanids. A reanalysis of the morphological data suggests that, if the relationships between living taxa are constrained to the proposed molecular tree, with fossil forms allowed to insert in their optimal positions within this framework, mosasaurs cluster with snakes rather than with varanids. Combined morphological and molecular analyses also still unite marine lizards with snakes. Thus, the molecular data do not refute the phylogenetic evidence for a marine origin of snakes.


Herpetozoa ◽  
2021 ◽  
Vol 34 ◽  
pp. 233-257
Author(s):  
Christoph I. Grünwald ◽  
Sarahi Toribio-Jiménez ◽  
Carlos Montaño-Ruvalcaba ◽  
Hector Franz-Chávez ◽  
Miguel A. Peñaloza-Montaño ◽  
...  

We describe two new species of Tropidodipsas related to the T. fasciata species group as defined by Kofron (1987), and provide morphological and molecular data to support the novelty of both species. A partial molecular phylogeny of the Mexican species of snail-eating snakes (Serpentes, Dipsadidae) is presented, and we discuss evolutionary relationships as supported by our molecular results. We analyze specific relationships of the new species described herein with their closest relatives. We present a distribution map for all species of Tropidodipsas and include photographs of living individuals of each species. Finally, we discuss other taxonomic changes based on our molecular phylogeny as well as conservation priorities of the new species.


Sign in / Sign up

Export Citation Format

Share Document