scholarly journals Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: A new tool for anthelmintic research

Author(s):  
Janis C. Weeks ◽  
William M. Roberts ◽  
Kristin J. Robinson ◽  
Melissa Keaney ◽  
Jon J. Vermeire ◽  
...  
Parasitology ◽  
2003 ◽  
Vol 126 (1) ◽  
pp. 79-86 ◽  
Author(s):  
J. WILLSON ◽  
K. AMLIWALA ◽  
A. HARDER ◽  
L. HOLDEN-DYE ◽  
R. J. WALKER

Here we report on the action of the novel cyclo-depsipeptide anthelmintic, emodepside, on the body wall muscle of the parasitic nematode, Ascaris suum. Emodepside caused (i) muscle relaxation, (ii) inhibition of muscle contraction elicited by either acetylcholine (ACh), or the neuropeptide, AF2 (KHEYLRFamide) and (iii) a rapid relaxation of muscle tonically contracted by ACh. The inhibitory action of emodepside on the response to ACh was not observed in a denervated muscle strip, indicating that it may exert this action through the nerve cord, and not directly on the muscle. Electrophysiological recordings showed emodepside elicited a Ca++-dependent hyperpolarization of muscle cells. Furthermore, the response to emodepside was dependent on extracellular K+, similar to the action of the inhibitory neuropeptides PF1 and PF2 (SDPNFLRFamide and SADPNFLRFamide). Thus emodepside may act at the neuromuscular junction to stimulate release of an inhibitory neurotransmitter or neuromodulator, with a similar action to the PF1/PF2 neuropeptides.


2019 ◽  
Vol 28 (1) ◽  
pp. 114-124
Author(s):  
Linda W. Norrix ◽  
Julie Thein ◽  
David Velenovsky

Purpose Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method Sixteen adults participated. Electrophysiological measures were obtained using simultaneous recordings by the Vivosonic and Intelligent Hearing Systems for subjects in 2 relaxed conditions and 4 active motor conditions. Three averaging times were used for the relaxed states (1, 1.5, and 3 min) and for the active states (1.5, 3, and 6 min). Repeated-measures analyses of variance were used to examine RN levels as a function of noise reduction strategy (i.e., KWA, AR) and averaging time. Results Lower RN levels were obtained using KWA than AR in both the relaxed and active motor states. Thus, KWA was more effective than was AR under the conditions examined in this study. Using KWA, approximately 3 min of averaging was needed in the relaxed condition to obtain an average RN level of 0.025 μV. In contrast, in the active motor conditions, approximately 6 min of averaging was required using KWA. Mean RN levels of 0.025 μV were not attained using AR. Conclusions When patients are not physiologically quiet, low RN levels are more likely to be obtained and more efficiently obtained using KWA than AR. However, even when using KWA, in active motor states, 6 min of averaging or more may be required to obtain threshold responses. Averaging time needed and whether a low RN level can be attained will depend on the level of motor activity exhibited by the patient.


1981 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Won Young Choi ◽  
Young Kwan Jin ◽  
Ok Ran Lee ◽  
Woon Gyu Kim

2020 ◽  
Vol 132 (4) ◽  
pp. 1234-1242 ◽  
Author(s):  
Paolo Belardinelli ◽  
Ramin Azodi-Avval ◽  
Erick Ortiz ◽  
Georgios Naros ◽  
Florian Grimm ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson’s disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21–35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4–6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Olimpia Tammaro ◽  
Angela Costagliola di Polidoro ◽  
Eugenia Romano ◽  
Paolo Antonio Netti ◽  
Enza Torino

2017 ◽  
Vol 33 (12) ◽  
pp. 1435-1440 ◽  
Author(s):  
Sunhee YOON ◽  
Hailing PIAO ◽  
Tae-Joon JEON ◽  
Sun Min KIM

Sign in / Sign up

Export Citation Format

Share Document