Physicochemical characterization and gene transfection efficiency of lipid emulsions with various co-emulsifiers

2005 ◽  
Vol 289 (1-2) ◽  
pp. 197-208 ◽  
Author(s):  
Chi-Feng Hung ◽  
Tsong-Long Hwang ◽  
Chia-Chun Chang ◽  
Jia-You Fang
2021 ◽  
Vol 66 ◽  
pp. 73-84
Author(s):  
Farzaneh Saeedi Landi ◽  
Babak Negahdari ◽  
Fariba Esmaeili ◽  
Sedigheh Kolivand ◽  
Amir Amani

Electrospray technique has received increasing attentions for intracellular gene delivery as well as production of nanoparticles. In this study, chitosan/pDNA nanoparticles with N/P ratio of 5 were prepared and transferred to HEK293T cells by electrospray technique. Physicochemical characterization of prepared nanoparticles, including size, zeta potential and entrapment efficiency was performed and attachment of pDNA to chitosan was confirmed by gel agarose electrophoresis. Moreover, transfection efficiency was investigated using flow cytometry. MTT assay was performed for cell viability studies. Nanoparticles were prepared at three pDNA concentrations of 10, 55 and 100 μg/ml in fixed N/P ratio. Size of nanoparticles was obtained as 110, 188 and 240 nm, using DLS. SEM showed size of 102.34 ± 10.66 nm for samples having 55 μg/ml pDNA. Zeta potential and entrapment efficiency were +25 mv and 85±4%m respectively. The effect of pDNA concentration, electrospray time and incubation time on transfection efficiency was investigated using Box-Behnken design. Percent of GFP-positive cells was 41.05 ± 3.04% which was taken as an indicator of transfection efficiency. Transfection efficiency of this method was then compared with that of calcium phosphate (31.1 ± 2.4%), showing improved efficiency. Considering the fact that electrospray is an easy, low cost, one-step process which makes low damage to cells and produces monodispersed nanoparticles, the method is introduced as a fascinating approach in gene transfection.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2021 ◽  
Vol 9 (7) ◽  
pp. 2454-2466
Author(s):  
Yingying Liu ◽  
Yuli Zhou ◽  
Jinfeng Xu ◽  
Hui Luo ◽  
Yao Zhu ◽  
...  

A novel dual-targeted cationic microbubbles help to improve gene transfection efficiency.


2015 ◽  
Vol 6 (5) ◽  
pp. 780-796 ◽  
Author(s):  
Cheng Wang ◽  
Xiuli Bao ◽  
Xuefang Ding ◽  
Yang Ding ◽  
Sarra Abbad ◽  
...  

A novel coating polymer LPHF is developed for the first time to elevate the transfection efficiency of DP binary polyplexes in vitro and in vivo.


Drug Delivery ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 1740-1745 ◽  
Author(s):  
Hui Zhang ◽  
Zhiyi Chen ◽  
Meng Du ◽  
Yue Li ◽  
Yuhao Chen

2020 ◽  
Vol 8 (12) ◽  
pp. 2483-2494
Author(s):  
Kun Zeng ◽  
Li Ma ◽  
Wenxiu Yang ◽  
Shan Lei ◽  
Mozhen Wang ◽  
...  

Guanidinated-fluorinated α-polylysine-modified organosilica nanoparticles can form a novel raisin-bread-like gene vector, which is disintegrated in cells by GSH to show high transfection efficiency.


Sign in / Sign up

Export Citation Format

Share Document