Introducing Electrospray as a Potent Technique to Deliver Chitosan/pDNA Nanoparticles to Eukaryotic Cells

2021 ◽  
Vol 66 ◽  
pp. 73-84
Author(s):  
Farzaneh Saeedi Landi ◽  
Babak Negahdari ◽  
Fariba Esmaeili ◽  
Sedigheh Kolivand ◽  
Amir Amani

Electrospray technique has received increasing attentions for intracellular gene delivery as well as production of nanoparticles. In this study, chitosan/pDNA nanoparticles with N/P ratio of 5 were prepared and transferred to HEK293T cells by electrospray technique. Physicochemical characterization of prepared nanoparticles, including size, zeta potential and entrapment efficiency was performed and attachment of pDNA to chitosan was confirmed by gel agarose electrophoresis. Moreover, transfection efficiency was investigated using flow cytometry. MTT assay was performed for cell viability studies. Nanoparticles were prepared at three pDNA concentrations of 10, 55 and 100 μg/ml in fixed N/P ratio. Size of nanoparticles was obtained as 110, 188 and 240 nm, using DLS. SEM showed size of 102.34 ± 10.66 nm for samples having 55 μg/ml pDNA. Zeta potential and entrapment efficiency were +25 mv and 85±4%m respectively. The effect of pDNA concentration, electrospray time and incubation time on transfection efficiency was investigated using Box-Behnken design. Percent of GFP-positive cells was 41.05 ± 3.04% which was taken as an indicator of transfection efficiency. Transfection efficiency of this method was then compared with that of calcium phosphate (31.1 ± 2.4%), showing improved efficiency. Considering the fact that electrospray is an easy, low cost, one-step process which makes low damage to cells and produces monodispersed nanoparticles, the method is introduced as a fascinating approach in gene transfection.

2010 ◽  
Vol 13 (4) ◽  
pp. 510 ◽  
Author(s):  
Bivash Mandal ◽  
Kenneth S Alexander ◽  
Alan T Riga

Purpose: Polymeric nanosuspension was prepared from an inert polymer resin (Eudragit® RL100) with the aim of improving the availability of sulfacetamide at the intraocular level to combat bacterial infections. Methods: Nanosuspensions were prepared by the solvent displacement method using acetone and Pluronic® F108 solution. Drug to polymer ratio was selected as formulation variable. Characterization of the nanosupension was performed by measuring particle size, zeta potential, Fourier Transform infrared spectra (FTIR), Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD), drug entrapment efficiency and in vitro release. In addition, freeze drying, redispersibility and short term stability study at room temperature and at 40C were performed. Results: Spherical, uniform particles (size below 500 nm) with positive zeta potential were obtained. No significant chemical interactions between drug and polymer were observed in the solid state characterization of the freeze dried nanosuspension (FDN). Drug entrapment efficiency of the selected batch was increased by changing the pH of the external phase and addition of polymethyl methacrylate in the formulation. The prepared nanosuspension exhibited good stability after storage at room temperature and at 40C. Sucrose and Mannitol were used as cryoprotectants and exhibited good water redispersibility of the FDN. Conclusion: The results indicate that the formulation of sulfacetamide in Eudragit® RL100 nanosuspension could be utilized as potential delivery system for treating ocular bacterial infections.


2003 ◽  
Vol 776 ◽  
Author(s):  
Xicheng Ma ◽  
Yuanhua Cai ◽  
Xia Li ◽  
Ning Lun ◽  
Shulin Wen

AbstractHigh-quality cobalt-filled carbon nanotubes (CNTs) were prepared in situ in the decomposition of benzene over Co/silica-gel nano-scale catalysts. Unlike the previous reports, the catalysts needn't be pre-reduced prior to the forming of Co-filled CNTs, thus the advantage of this method is that Co-filled CNTs can be produced in one step, at a relatively low cost. Transmission electron microscopy (TEM) investigation showed that the products contained abundance of CNTs and most of them were filled with metallic nanoparticles or nanorods. High-resolution TEM (HRTEM), selected area electron diffraction (SAED) patterns and energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Co inside the nanotubes. The encapsulated Co was further identified always as high temperature alpha-Co phase with fcc structure, which frequently consists of twinned boundaries and stacking faults. Based on the experimental results, a possible growth mechanism of the Co-filled CNTs was proposed.


2019 ◽  
Author(s):  
Sofia Bisso ◽  
Simona Mura ◽  
Bastien Castagner ◽  
Patrick Couvreur ◽  
Jean-Christophe Leroux

AbstractDespite many years of research and a few success stories with gene therapeutics, efficient and safe DNA delivery remains a major bottleneck for the clinical translation of gene-based therapies. Gene transfection with calcium phosphate (CaP) nanoparticles brings the advantages of low toxicity, high DNA entrapment efficiency and good endosomal escape properties. The macroscale aggregation of CaP nanoparticles can be easily prevented through surface coating with bisphosphonate conjugates. Bisphosphonates, such as alendronate, recently showed promising anticancer effects. However, their poor cellular permeability and preferential bone accumulation hamper their full application in chemotherapy. Here, we investigated the dual delivery of plasmid DNA and alendronate using CaP nanoparticles, with the goal to facilitate cellular internalization of both compounds and potentially achieve a combined pharmacological effect on the same or different cell lines. A pH-sensitive poly(ethylene glycol)-alendronate conjugate was synthetized and used to formulate stable plasmid DNA-loaded CaP nanoparticles. These particles displayed good transfection efficiency in cancer cells and a strong cytotoxic effect on macrophages. The in vivo transfection efficiency, however, remained low, calling for an improvement of the system, possibly with respect to the extent of particle uptake and their physical stability.Graphical abstract


Author(s):  
A. Hasrawati ◽  
Irsan Rizaldi ◽  
Deisy Febrianti ◽  
A Mumtihanah Mursyid ◽  
Neneng Amelia Bakri

Objective: Thymoquinone is a main component of Black Cumin (Nigella  sativa Linn.) with various pharmacological activities, but has poor stability and bioavailability. The purpose of this study was to carry out the preparation and characterization of timoquinone nanoparticles PEGylation. Methods: The Thymoquinone nanoparticles  (TQ-NP) were made with PEGylation using PEG 6000 with the concentrations on each preparation of 3 mM (A), 4 mM (B), and 5 mM (C) then were evaluated by the parameter of yield percentage Entrapment Efficiency (EE) and Drug Loading (DL), drug release, size and distribution particle, morphological analysis and Fourier Transform-Infrared spectrophotometer (FTIR). Results: Thymoquinone nanoparticle was PEGylated with PEG 6000  has the highest efficiency entrapment of 99.9718±0.029% in formula A, with the capacity of drug loading 0,66%. Formulation A release 99.9718±0.029% of Thymoquinone at 50 minutes. The morphological observations with Scanning Electron Microscope (SEM) showed spherical nanoparticles morphology.                           Peer Review History: Received 11 September  2020; Revised 5 Decembe; Accepted 3 January, Available online 15 January 2021 UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency. Received file:                           Comments of reviewer(s):         Average Peer review marks at initial stage: 6.0/10 Average Peer review marks at publication stage: 8.0/10 Reviewer(s) detail: Dr. Evren Alğin Yapar, Turkish Medicines and Medical Devices Agency, Turkiye, [email protected] Dr. Sally A. El-Zahaby, Pharos University in Alexandria, Egypt, [email protected] Similar Articles: ABACAVIR LOADED NANOPARTICLES: PREPARATION, PHYSICOCHEMICAL CHARACTERIZATION AND IN VITRO EVALUATION LONG CHAIN POLYMERIC CARBOHYDRATE DEPENDENT NANOCOMPOSITES IN TISSUE ENGINEERING EFFECT OF PEGYLATED EDGE ACTIVATOR ON SPAN 60 BASED- NANOVESICLES: COMPARISON BETWEEN MYRJ 52 AND MYRJ 59


Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 42 ◽  
Author(s):  
Sandra Rubiano ◽  
Juan D. Echeverri ◽  
Constain H. Salamanca

The development and physicochemical characterization of solid lipid nanoparticles (SLNs) with potential for formulating hair cosmetic products were carried out. SLNs were made from Otoba wax, which is native to the tropical Andean region and has a high chemical composition of fatty acids with intermediate chains. SLNs were formulated by preparing wax-in-water dispersions at two internal phase proportions (low = 5% w/w and high = 20% w/w), using the same ratio of surfactant system and preservatives. The coarse dispersions were subjected to ultrahigh pressure homogenization (UHPH), and thermal stability assays for 4 weeks were carried out, where changes in Creaming Index, droplet size, polydispersity, viscosity, zeta potential, conductivity, and pH were evaluated. The results showed that Otoba wax has a required HLB value around 9 and is mainly composed of lauric (~35%) and myristic (~45%), which have been reported to improve the condition of hair loss. Regarding the development on SLNs, it was found that the internal phase concentration did not considerably affect the physicochemical and microbiological properties. Likewise, it was found that UHPH enabled the production of SLNs with particle sizes <200 nm, low polydispersity (<0.3), high zeta potential values, and suitable physical and microbiological stability. Therefore, Otoba wax has potential for the development of SLNs applicable to cosmetic formulations, especially for hair products.


2012 ◽  
Vol 15 (1) ◽  
pp. 184 ◽  
Author(s):  
Marco Bragagni ◽  
Natascia Mennini ◽  
Carla Ghelardini ◽  
Paola Mura

ABSTRACT - Purpose. The aim of the present work was the development and characterization of a niosomal formulation functionalized with the glucose-derivative N-palmitoylglucosamine (NPG) to obtain a potential brain targeted delivery system for the anticancer agent doxorubicin. Methods. Five different methods have been examined for vesicle preparation. Light scattering and transmission electron microscopy were used for vesicle characterization, in terms of mean size, homogeneity and Zeta potential, and selection of the best composition and preparation conditions for developing NPG-functionalized niosomes. Drug entrapment efficiency was determined after separation of loaded from unloaded drug by size exclusion chromatography or dialysis. Preliminary in vivo studies were performed on rats, injected i.v. with 12 mg/kg of doxorubicin as commercial solution (Ebewe, 2mg/mL) or NPG-niosomal formulation. Drug amounts in the blood and in the major organs of the animals, sacrificed 60 min post injection, were determined by HPLC. Results. The selected formulation consisted in Span:cholesterol:Solulan:NPG (50:40:10:10 mol ratio) vesicles obtained by thin-layer evaporation, leading to homogeneous vesicles of less than 200 nm diameter. This formulation was used for preparation of NPG-niosomes loaded with doxorubicin (mean size 161±4 nm, encapsulation efficacy 57.8±1.8%). No significant changes (P>0.05) in vesicle dimensions, Zeta potential or entrapment efficiency were observed after six months storage at room temperature, indicative of good stability. I.v. administration to rats of the NPG-niosomal formulation allowed for reducing drug accumulation in the heart and keeping it longer in the blood circulation with respect to the commercial formulation. Moreover, a doxorubicin brain concentration of 2.9±0.4 µg/g was achieved after 60 min, while the commercial solution yielded undetectable drug brain concentrations (


2013 ◽  
Vol 2 (10) ◽  
pp. 1304-1308 ◽  
Author(s):  
Chuan Yang ◽  
Wei Cheng ◽  
Pei Yun Teo ◽  
Amanda C. Engler ◽  
Daniel J. Coady ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document