Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release

2007 ◽  
Vol 329 (1-2) ◽  
pp. 103-109 ◽  
Author(s):  
S WANG ◽  
B CHEN ◽  
L WANG ◽  
J CHEN
e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Wu ◽  
Qing Yang ◽  
Yali Gi ◽  
Yueting Zhang

AbstractA novel hydrogel wound dressing with semi-interpenetrating polymer network structure (semi-IPN) was prepared by radical polymerization of acrylic acid with potassium persulfate (K2S2O8) as initiator and N, N'-methylenebisacrylamide (MBA) as cross-linking agent in the presence of chitosan (CTS) and polyvinyl pyrrolidone (PVP). Hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM displayed semi- IPN hydrogels' creased surface with some scale-like wrinkles, thus improving the absorptive capability which has been considered as a most important characteristic of wound dressings. It was found that the content of cross-linking agent and the mass ratio of PVP and CTS had much influence on the mechanical properties of the hydrogel, varying from brittle plastics to elastomer due to the different degrees of cross linking. Since tensile strength is partly in inverse ratio to the hydrogel absorbent capability, the article offers an analysis of varying material proportion in order to obtain an optimum properties of the hydrogel wound dressing .


Author(s):  
Saruchi Sharma ◽  
VANEET KUMAR

Objective: This study involves the synthesis of Gum tragacanth (gt) based interpenetrating polymer network (ipn) and its utilization for sustained release of anti-ulcerative drug i.e. pantoprazole sodium. Methods: IPN was synthesized from Gum tragacanth, polyacrylic acid (gt-cl-paa) hydrogel. gt-cl-paa was kept in distilled water. Further, acryamide (aam) and methylmethacrylate (mma) was added and then kept for overnight. Later on, lipase and glutaraldehyde were added. Homopolymers and the unreacted monomers were removed using acetone. Synthesized IPN was dried at 50 °C for further study. Synthesized ipn was swelled in water and the drug was added to it. The drug was entrapped in the pores of the synthesized ipn and then drug release behavior was studied using uv-vis spectrophotometer. Results: Gt, paa and mma based crosslinked IPN were synthesized using lipase-glutaraldehyde as initiator-crosslinker system. The synthesized IPN was pH sensitive and possessed the desired swelling capacity required for the controlled and systematic liberation of pantoprazole sodium at 37 °C. The kinetic of drug release was studied and found that lateral diffusion (DL) of drug was higher as compared to the initial diffusion (DI). The prepared IPN can be used as prospective carrier for prolonged drug delivery. Conclusion: A novel pH sensitive and colon targeted IPN was synthesized. It acts as an effective device for the controlled release of drug pantoprazole sodium.


2003 ◽  
Vol 90 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Seon Jeong Kim ◽  
Ki Jung Lee ◽  
Sun I. Kim ◽  
Kyu Back Lee ◽  
Yong Doo Park

Sign in / Sign up

Export Citation Format

Share Document