scholarly journals ENZYMATICALLY SYNTHESIZED pH-RESPONSIVE IPN FOR IN-SITU RELEASE OF PANTOPRAZOLE SODIUM

Author(s):  
Saruchi Sharma ◽  
VANEET KUMAR

Objective: This study involves the synthesis of Gum tragacanth (gt) based interpenetrating polymer network (ipn) and its utilization for sustained release of anti-ulcerative drug i.e. pantoprazole sodium. Methods: IPN was synthesized from Gum tragacanth, polyacrylic acid (gt-cl-paa) hydrogel. gt-cl-paa was kept in distilled water. Further, acryamide (aam) and methylmethacrylate (mma) was added and then kept for overnight. Later on, lipase and glutaraldehyde were added. Homopolymers and the unreacted monomers were removed using acetone. Synthesized IPN was dried at 50 °C for further study. Synthesized ipn was swelled in water and the drug was added to it. The drug was entrapped in the pores of the synthesized ipn and then drug release behavior was studied using uv-vis spectrophotometer. Results: Gt, paa and mma based crosslinked IPN were synthesized using lipase-glutaraldehyde as initiator-crosslinker system. The synthesized IPN was pH sensitive and possessed the desired swelling capacity required for the controlled and systematic liberation of pantoprazole sodium at 37 °C. The kinetic of drug release was studied and found that lateral diffusion (DL) of drug was higher as compared to the initial diffusion (DI). The prepared IPN can be used as prospective carrier for prolonged drug delivery. Conclusion: A novel pH sensitive and colon targeted IPN was synthesized. It acts as an effective device for the controlled release of drug pantoprazole sodium.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1974
Author(s):  
Juan Carlos Quintanilla de Stéfano ◽  
Vanessa Abundis-Correa ◽  
Sergio Daniel Herrera-Flores ◽  
Alejandro J. Alvarez

The drug release behavior of pH-sensitive starch-based hydrogels was systematically studied. Hydrogels were synthesized by copolymerization of acrylic acid (AA) and other acrylate comonomers onto the starch backbone. The hydrophilic agents 2-hydroxy ethyl methacrylate (HEMA), and acrylamide (AAm), as well as the hydrophobic butyl-methacrylate (BMA), were utilized as comonomers. Methylene-bisacrylamide (MBA) was employed as a crosslinking agent. The synthesized hydrogels were loaded with caffeine as a model drug. The effects of the hydrophobic/hydrophilic character of the comonomers and chemical crosslinking on the swelling capacity and the release rate of caffeine were investigated. The use of the crosslinking agent and hydrophobic monomers decreased the swelling capacity of the hydrogels. The release rate of caffeine increased with the presence of a hydrophobic monomer. The fastest release was obtained with the AA/BMA/AAm formulation, and the slowest release was observed with the AA/HEMA/AAm formulation. The transport mechanism was controlled by Fickian diffusion in formulations containing AAm, and controlled by the polymer-relaxation mechanism in formulations containing MBA. Overall, our results showed that the swelling and drug delivery behavior can be tuned by varying the chemical composition of the copolymer formulations. These starch-based hydrogels can be useful as drug delivery devices in many biomedical applications.


2013 ◽  
Vol 97 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Qi Xu ◽  
Weijuan Huang ◽  
Linbin Jiang ◽  
Zhanjun Lei ◽  
Xueyong Li ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (75) ◽  
pp. 39822-39829 ◽  
Author(s):  
Saruchi Saruchi ◽  
B. S. Kaith ◽  
Rajeev Jindal ◽  
Vaneet Kumar ◽  
Manpreet S. Bhatti

The present study proposes the development and optimization of a new interpenetrating polymer network (IPN), consisting of Gum tragacanth, poly(acrylic acid) (PAA), and poly(acrylamide) (PAAm), for the in situ controlled release of losartan potassium under different pH conditions at 37 °C.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhengdong Fei ◽  
Dong Zheng ◽  
Ping Fan ◽  
Feng Chen ◽  
Mingqiang Zhong

AbstractA triple interpenetrating polymer network (IPN) with dual responses to temperature and pH was constructed based on chemical crosslinking and electrostatic interaction. In this IPN, CaCO3 microspheres were used as the kernel and PNIPAAM/sodium alginate microcapsules were prepared by the inverse emulsion polymerization method. Research results demonstrated that CaCO3 kernels were decomposed into Ca2+ and CO2 at pH 1.2. Such decomposition facilitated the formation of triple IPN of Ca2+ crosslinking. Moreover, microcapsules were expanded by tension of CO2 and the volume increased to 3.55 × 105 times that of the original microcapsules, with capsules remaining an intact morphology. These microcapsules loading doxorubicin hydrochloride (DOX) stability and responses to environment were investigated. No drug overflow was observed at pH 7.4, indicating the high stability of microcapsules. However, DOX was released gradually in the simulated human stomach acid with a weak solution of hydrochloric acid (pH 1.2, 37 °C). This showed that the prepared microcapsules were feasible for drug-loaded capsules and the controlled drug release behavior could relieve side effects of drugs to human body. Moreover, it will help to increase the drug utilization and realize accurate treatment.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3197
Author(s):  
Younghyun Shin ◽  
Dajung Kim ◽  
Yiluo Hu ◽  
Yohan Kim ◽  
In Ki Hong ◽  
...  

Carboxymethyl cellulose (CMC)-based hydrogels are generally superabsorbent and biocompatible, but their low mechanical strength limits their application. To overcome these drawbacks, we used bacterial succinoglycan (SG), a biocompatible natural polysaccharide, as a double crosslinking strategy to produce novel interpenetrating polymer network (IPN) hydrogels in a non-bead form. These new SG/CMC-based IPN hydrogels significantly increased the mechanical strength while maintaining the characteristic superabsorbent property of CMC-based hydrogels. The SG/CMC gels exhibited an 8.5-fold improvement in compressive stress and up to a 6.5-fold higher storage modulus (G′) at the same strain compared to the CMC alone gels. Furthermore, SG/CMC gels not only showed pH-controlled drug release for 5-fluorouracil but also did not show any cytotoxicity to HEK-293 cells. This suggests that SG/CMC hydrogels could be used as future biomedical biomaterials for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document