Residual stress and stress fields change around fatigue crack tip: Neutron diffraction measurement and finite element modeling

2020 ◽  
Vol 179 ◽  
pp. 104024 ◽  
Author(s):  
Wenchun Jiang ◽  
Yue Yu ◽  
Weiya Zhang ◽  
Chengran Xiao ◽  
Wanchuck Woo
2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Yun Luo ◽  
Wenchun Jiang ◽  
Dongfeng Chen ◽  
Robert C. Wimpory ◽  
Meijuan Li ◽  
...  

Repair welding is a popular method to repair the leakage zone in tube-to-tubesheet joint of shell-tube heat exchangers. But the repaired residual stresses are generated inevitably and have a great effect on stress corrosion cracking (SCC). In this paper, the effects of repair welding on residual stress were studied by finite element method (FEM) and neutron diffraction measurement. The original weld residual stresses calculated by FEM showed good agreement with neutron diffraction measurement results. After repair welding, the transverse residual stresses change very little while the longitudinal residual stresses are increased in the repair zone. In the nonrepair zone, both the transverse and longitudinal stresses are decreased. The repair welding times have little effect on residual stress distribution. With the increase of welding length and heat input, the residual stresses increase. Repair opposite to the original welding direction is recommended because the opposite welding direction minimizes the residual stresses.


2000 ◽  
Vol 39 (Part 1, No. 12A) ◽  
pp. 6652-6657 ◽  
Author(s):  
Kazuko Inoue ◽  
Hisakazu Kawashima ◽  
Junya Sakaguchi ◽  
Nobuaki Minakawa ◽  
Yoshinori Tsuchiya ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 629
Author(s):  
Nana Kwabena Adomako ◽  
Sung Hoon Kim ◽  
Ji Hong Yoon ◽  
Se-Hwan Lee ◽  
Jeoung Han Kim

Residual stress is a crucial element in determining the integrity of parts and lifetime of additively manufactured structures. In stainless steel and Ti-6Al-4V fabricated joints, residual stress causes cracking and delamination of the brittle intermetallic joint interface. Knowledge of the degree of residual stress at the joint interface is, therefore, important; however, the available information is limited owing to the joint’s brittle nature and its high failure susceptibility. In this study, the residual stress distribution during the deposition of 17-4PH stainless steel on Ti-6Al-4V alloy was predicted using Simufact additive software based on the finite element modeling technique. A sharp stress gradient was revealed at the joint interface, with compressive stress on the Ti-6Al-4V side and tensile stress on the 17-4PH side. This distribution is attributed to the large difference in the coefficients of thermal expansion of the two metals. The 17-4PH side exhibited maximum equivalent stress of 500 MPa, which was twice that of the Ti-6Al-4V side (240 MPa). This showed good correlation with the thermal residual stress calculations of the alloys. The thermal history predicted via simulation at the joint interface was within the temperature range of 368–477 °C and was highly congruent with that obtained in the actual experiment, approximately 300–450 °C. In the actual experiment, joint delamination occurred, ascribable to the residual stress accumulation and multiple additive manufacturing (AM) thermal cycles on the brittle FeTi and Fe2Ti intermetallic joint interface. The build deflected to the side at an angle of 0.708° after the simulation. This study could serve as a valid reference for engineers to understand the residual stress development in 17-4PH and Ti-6Al-4V joints fabricated with AM.


2009 ◽  
Vol 24 (S1) ◽  
pp. S22-S25
Author(s):  
Y. B. Guo ◽  
S. Anurag

Hard turning, i.e., turning hardened steels, may produce the unique “hook” shaped residual stress (RS) profile characterized by surface compressive RS and subsurface maximum compressive RS. However, the formation mechanism of the unique RS profile is not yet known. In this study, a novel hybrid finite element modeling approach based on thermal-mechanical coupling and internal state variable plasticity model has been developed to predict the unique RS profile patterns by hard turning AISI 52100 steel (62 HRc). The most important controlling factor for the unique characteristics of residual stress profiles has been identified. The transition of maximum residual stress at the surface to the subsurface has been recovered by controlling the plowed depth. The predicted characteristics of residual stress profiles favorably agree with the measured ones. In addition, friction coefficient only affects the magnitude of surface residual stress but not the basic shape of residual stress profiles.


Sign in / Sign up

Export Citation Format

Share Document