Experimental Study on the Effect of Heating Plate (Heat Source) Temperature on a New Vacuum Sublimation - Rehydration Thawing

Author(s):  
Shanshan Chen ◽  
Weidong Wu ◽  
Fangran Liu ◽  
Hua Zhang ◽  
Weifang Yang
2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


2006 ◽  
Vol 326-328 ◽  
pp. 1275-1278 ◽  
Author(s):  
Chang Oh Kim ◽  
Jin Heung Kim ◽  
Nak Kyu Chung

This study aims to find out cooling characteristics of TMA 25wt%-water clathrate compound with ethanol such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at -6, -7 and -8, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as 5.1 and 5.0, 3.8 according to cooling source temperature in case that 0.5wt% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is 0.9 and minimum supercooling is 0.8, 0.7 according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is 3.013~3.048 kJ/kgK according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol.


Author(s):  
Rachana Vidhi ◽  
Sarada Kuravi ◽  
Saeb Besarati ◽  
E. K. Stefanakos ◽  
D. Yogi Goswami ◽  
...  

This paper reports on the performance of various organic refrigerants and their mixtures as working fluids for power generation in a supercritical Rankine cycle (SRC) from geothermal sources. Organic fluids that have zero or very low ozone depletion potential and are environmentally safe are selected for this study. Geothermal source temperature is varied from 125–200°C, and the cooling water temperature is changed from 10–20°C. The effect of varying operating conditions on the performance of the thermodynamic cycle has been analyzed. Operating pressure of the cycle has been optimized for thermal efficiency for each fluid at each source temperature. The condensation pressure is determined by the cooling condition and is kept fixed for each condensation temperature. Energy and exergy efficiencies of the cycle have been obtained for the pure fluids as a function of heat source temperature. Mixtures of organic fluids have been analyzed and effect of composition on performance of the thermodynamic cycle has been studied. It is observed that thermal efficiency over 20% can be achieved for 200°C heat source temperature and the lowest cooling temperature. When mixtures are considered as working fluids, the thermal efficiency of the cycle is observed to remain between the thermal efficiencies of the constituent fluids.


Sign in / Sign up

Export Citation Format

Share Document