Microstructure and properties that change during hard cyclic visco-plastic deformation of bulk high purity niobium

Author(s):  
Lembit Kommel
2020 ◽  
Vol 9 (6) ◽  
pp. 759-768
Author(s):  
Yunhui Niu ◽  
Shuai Fu ◽  
Kuibao Zhang ◽  
Bo Dai ◽  
Haibin Zhang ◽  
...  

AbstractThe synthesis, microstructure, and properties of high purity dense bulk Mo2TiAlC2 ceramics were studied. High purity Mo2TiAlC2 powder was synthesized at 1873 K starting from Mo, Ti, Al, and graphite powders with a molar ratio of 2:1:1.25:2. The synthesis mechanism of Mo2TiAlC2 was explored by analyzing the compositions of samples sintered at different temperatures. It was found that the Mo2TiAlC2 phase was formed from the reaction among Mo3Al2C, Mo2C, TiC, and C. Dense Mo2TiAlC2 bulk sample was prepared by spark plasma sintering (SPS) at 1673 K under a pressure of 40 MPa. The relative density of the dense sample was 98.3%. The mean grain size was 3.5 μm in length and 1.5 μm in width. The typical layered structure could be clearly observed. The electrical conductivity of Mo2TiAlC2 ceramic measured at the temperature range of 2–300 K decreased from 0.95 × 106 to 0.77 × 106 Ω–1·m–1. Thermal conductivity measured at the temperature range of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)–1. The thermal expansion coefficient (TEC) of Mo2TiAlC2 measured at the temperature of 350–1100 K was calculated as 9.0 × 10–6 K–1. Additionally, the layered structure and fine grain size benefited for excellent mechanical properties of low intrinsic Vickers hardness of 5.2 GPa, high flexural strength of 407.9 MPa, high fracture toughness of 6.5 MPa·m1/2, and high compressive strength of 1079 MPa. Even at the indentation load of 300 N, the residual flexural strength could hold 84% of the value of undamaged one, indicating remarkable damage tolerance. Furthermore, it was confirmed that Mo2TiAlC2 ceramic had a good oxidation resistance below 1200 K in the air.


2018 ◽  
Vol 934 ◽  
pp. 105-110 ◽  
Author(s):  
Ke Jian Li ◽  
Qiang Zheng ◽  
Yue Lin Qin ◽  
Xiao Wei Liu

Plastic deformation can induce surface modification, such as shot peening (SP) on workpiece surface is the hot issue of recent scientific research. SP is the efficient way to improve mechanical behavior of specimens by inducing sever plastic deformation on their surface. Nevertheless, this surface treatment induced complex microstructural evolutions such as grain refinement, will enhance the corrosion resistance of specimens. In this work, the microstructure and properties of 34CrMo4 alloy of before and after SP for 20 min have been investigated. The evolution of microstructure and properties were analyzed from the surface and cross-section. The microstructure morphology at the different depth was determined by optical microscope. The results show grain size is increasing with the depth, and the microhardness and compressive residual stress decrease gradually. In terms of corrosion resistance, the 50 μm depth specimen has the best property than other depth, which the potential and corrosion current density are-0.484 V and-5.72 Acm-2, respectively. The maximum polarization resistance is 2055 Ωcm2by capacitive arc radius of electrochemical impedance spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document