scholarly journals Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering

2020 ◽  
Vol 9 (6) ◽  
pp. 759-768
Author(s):  
Yunhui Niu ◽  
Shuai Fu ◽  
Kuibao Zhang ◽  
Bo Dai ◽  
Haibin Zhang ◽  
...  

AbstractThe synthesis, microstructure, and properties of high purity dense bulk Mo2TiAlC2 ceramics were studied. High purity Mo2TiAlC2 powder was synthesized at 1873 K starting from Mo, Ti, Al, and graphite powders with a molar ratio of 2:1:1.25:2. The synthesis mechanism of Mo2TiAlC2 was explored by analyzing the compositions of samples sintered at different temperatures. It was found that the Mo2TiAlC2 phase was formed from the reaction among Mo3Al2C, Mo2C, TiC, and C. Dense Mo2TiAlC2 bulk sample was prepared by spark plasma sintering (SPS) at 1673 K under a pressure of 40 MPa. The relative density of the dense sample was 98.3%. The mean grain size was 3.5 μm in length and 1.5 μm in width. The typical layered structure could be clearly observed. The electrical conductivity of Mo2TiAlC2 ceramic measured at the temperature range of 2–300 K decreased from 0.95 × 106 to 0.77 × 106 Ω–1·m–1. Thermal conductivity measured at the temperature range of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)–1. The thermal expansion coefficient (TEC) of Mo2TiAlC2 measured at the temperature of 350–1100 K was calculated as 9.0 × 10–6 K–1. Additionally, the layered structure and fine grain size benefited for excellent mechanical properties of low intrinsic Vickers hardness of 5.2 GPa, high flexural strength of 407.9 MPa, high fracture toughness of 6.5 MPa·m1/2, and high compressive strength of 1079 MPa. Even at the indentation load of 300 N, the residual flexural strength could hold 84% of the value of undamaged one, indicating remarkable damage tolerance. Furthermore, it was confirmed that Mo2TiAlC2 ceramic had a good oxidation resistance below 1200 K in the air.

2012 ◽  
Vol 512-515 ◽  
pp. 924-927
Author(s):  
Hui Yong Rong ◽  
Zhi Jian Peng ◽  
Xiao Yong Ren ◽  
Ying Peng ◽  
Cheng Biao Wang ◽  
...  

Ultrafine WC-Ni cemented carbides with addition of SiC whisker (SiCw) were fabricated by spark plasma sintering. The microstructure and mechanical properties of the fabricated cemented carbides were investigated. It was found that the addition of SiC whisker had no obvious influence on the phase compositions of the cemented carbides, but the mean grain size of the cemented carbides decreased as the addition fraction of SiC whisker increased. The fabricated WC-Ni cemented carbides presented the highest hardness when 0.75 wt% SiC whisker was added. However, the addition of SiC whisker was detrimental to the flexural strength of the cemented carbides because of the formation of inhomogeneous microstructure in the WC-Ni cemented carbides.


2013 ◽  
Vol 647 ◽  
pp. 758-761
Author(s):  
Ping Fu ◽  
Wen Zhong Lu ◽  
Wen Lei ◽  
Yong Xu ◽  
Xian Long Lu

Transparent polycrystalline MgAl2O4ceramics were fabricated by using spark plasma sintering (SPS) technique at a temperature range from 1275 °C to 1400 °C. The average grain size of the samples fabricated at optimal sintering processes was 345 nm. The in-line transmittance of the sintered ceramics can be as high as 70% at 550 nm and 82% at 2000 nm, respectively. The optimal microwave dielectric properties (εr = 8.38, Q×f = 54000 GHz and τf = -74 ppm/°C) were achieved at 1325°C for 20 min.


2007 ◽  
Vol 534-536 ◽  
pp. 1229-1232
Author(s):  
Li Hui Zhu ◽  
Guang Jie Shao ◽  
Yi Xiong Liu ◽  
Dave Siddle

WC-10Co-0.8VC nanocrystalline powders were sintered by spark plasma sintering (SPS) and hot pressing sintering (HPS), and the microstructure and properties were compared. Results show that, sintered at 1300°C, the sample prepared by SPS for only 3 minutes has higher density than that prepared by HPS for 60 minutes. SEM and SPM observation shows SPS at 1200°C has a more uniform and finer microstructure, and most of the WC grains are smaller than 100nm. It has a relative density of 95.1%, HV30 of 1887, and KIC of 11.5 MPam1/2. If a suitable sintering parameter is chosen, SPS is a promising consolidation technique to prepare nanocrystalline WC-10Co-0.8VC with improved properties.


2022 ◽  
pp. 131671
Author(s):  
Dina V. Dudina ◽  
Tatyana F. Grigoreva ◽  
Vyacheslav I. Kvashnin ◽  
Evgeniya T. Devyatkina ◽  
Sergey V. Vosmerikov ◽  
...  

2018 ◽  
Vol 145 ◽  
pp. 435-443 ◽  
Author(s):  
Özge Balcı ◽  
Ulrich Burkhardt ◽  
Marcus Schmidt ◽  
Jürgen Hennicke ◽  
M. Barış Yağcı ◽  
...  

2019 ◽  
Vol 103 (9-12) ◽  
pp. 4529-4540 ◽  
Author(s):  
Samuel Ranti Oke ◽  
Oladeji Oluremi Ige ◽  
Oluwasegun Eso Falodun ◽  
Avwerosuoghene M. Okoro ◽  
Mahlatse R. Mphahlele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document