Wear resistance and thermal stability enhancement of PDC sintered with Ti-coated diamond and cBN

Author(s):  
Zhaoran Chen ◽  
Dejiang Ma ◽  
Shanmin Wang ◽  
Wenhao Dai ◽  
Pinwen Zhu ◽  
...  
2006 ◽  
Vol 25 (7-8) ◽  
pp. 529-535 ◽  
Author(s):  
Angel Mozo-Villarías ◽  
Juan Cedano ◽  
Enrique Querol

2015 ◽  
Vol 51 (11) ◽  
pp. 1-4
Author(s):  
Z. W. Liu ◽  
L. Z. Zhao ◽  
S. L. Hu ◽  
H. Y. Yu ◽  
X. C. Zhong ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112751 ◽  
Author(s):  
Chi-Wen Lee ◽  
Hsiu-Jung Wang ◽  
Jenn-Kang Hwang ◽  
Ching-Ping Tseng

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jae-Hong Kim ◽  
Ja-Bin Lee ◽  
Gwang-Guk An ◽  
Seung-Mo Yang ◽  
Woo-Seong Chung ◽  
...  

2002 ◽  
Vol 725 ◽  
Author(s):  
Seung Koo Park ◽  
Jung Yun Do ◽  
Jung-Jin Ju ◽  
Suntak Park ◽  
Myung-Hyun Lee

AbstractA new host-guest electro optic (EO) polymer, in which a chromophore can be reacted with the polymer main chain during poling to give the corresponding side-chain EO polymer, has been prepared for improving EO effect and its thermal stability. Polyisoimide (PII) synthesized from 2, 2-bis (4-aminophenyl) hexafluoropropane and oxydiphthalic anhydride and Disperse Red 1 (DR1) were used as a host and a guest, respectively. A model compound reaction and Infrared spectra of the host-guest film after annealing at various temperatures show that the reaction between the isoimide groups in PII and the hydroxyl groups in DR1 occurs around 140 °C. The glass transition temperatures of the resulting EO polyamic aicd ester-imide copolymer with 0, 10, 20 and 30 wt. % of chromophore concentration were 275, 219, 160, and 124 °C, respectively. The EO coefficient obtained at a wavelength of 1.55 νm was 5.3 and 10.5 pm/V from the EO polymer film with 20 and 30 wt. % DR1. The EO signals exhibited only a slight decay at high temperature due to the chemical reaction between the host and guest during poling.


2020 ◽  
Vol 141 ◽  
pp. 106503
Author(s):  
Min-Ho Hwang ◽  
Heon Kong ◽  
Ji-Won Jeong ◽  
Hyun-Yong Lee

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1002 ◽  
Author(s):  
Chunmeng Xu ◽  
Lingjun Tang ◽  
Youxiang Liang ◽  
Song Jiao ◽  
Huimin Yu ◽  
...  

For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones RrGroEL and RrGroES from Rhodococcus ruber, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, E. coli and R. ruber. In the E. coli host, fusion expression of nitrilase with either RrGroES or RrGroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32–47% reduction). The co-expression strategy was applied in R. ruber via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the R. ruber genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of RrGroES or RrGroEL with a plasmid, the engineered strains R. ruber TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroES) and TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the RrGroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-Pami-RrNit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts.


2007 ◽  
Vol 60 (7) ◽  
pp. 496 ◽  
Author(s):  
Aravind Dasari ◽  
Szu-Hui Lim ◽  
Zhong-Zhen Yu ◽  
Yiu-Wing Mai

Addition of a small percent of clay to polymers improves their stiffness, strength, dimensional stability, and thermal, optical, and barrier properties. Improvements are often attributed to the availability of large numbers of clay nanolayers with tremendous interfacial area. Despite the positive effects from the addition of clay, there are unresolved issues, such as embrittlement, thermal stability, flame retardancy, scratch–wear response of the resultant nanocomposites, and/or achieving a balance between different mechanical and physical properties. In this review, we discuss these issues and the approaches that have been adopted in the expectation of resolving and understanding them, with particular emphasis on our recent and current research.


Sign in / Sign up

Export Citation Format

Share Document