Experimental study of infrasonic signal generation during rock fracture under uniaxial compression

Author(s):  
Xing Zhu ◽  
Qiang Xu ◽  
Jianbin Zhou ◽  
Minggao Tang
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2108
Author(s):  
Guanlin Liu ◽  
Youliang Chen ◽  
Xi Du ◽  
Peng Xiao ◽  
Shaoming Liao ◽  
...  

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock’s initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.


Author(s):  
Jian Xu ◽  
Liyang Zhou ◽  
Yanfeng Li ◽  
Jiulong Ding ◽  
Songhe Wang ◽  
...  

2019 ◽  
Vol 484 (5) ◽  
pp. 610-614
Author(s):  
A. G. Sorokin ◽  
A. V. Klyuchevskii

A comprehensive analysis of waveforms of seismic and infrasonic vibrations from the earthquake that occurred on December 5, 2014, in the water area of Lake Hovsgol was performed. The analysis showed that the infrasonic signal recorded at the Tory station (Geophysical Observatory of the Institute of Solar-Terrestrial Physics, Russian Academy of Sciences) was formed by the sources of three generation types: local, secondary, and epicentral. The obtained results allow us to propose the model of epicentral infrasonic signal generation by flexural waves from an elastic ice membrane on the surface of Lake Hovsgol.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Junwen Zhang

To investigate relation between fracture scale and acoustic emission time-frequency parameters in rocks, experiments of acoustic emission monitoring of granite uniaxial compression were carried out. The AE signal energy and dominant-frequency of granite fracture process were extracted by means of AE time-frequency analysis. The relation between fracture scale and AE time-frequency parameters (energy and frequency) in granite fracture process was analyzed. The evaluation model of rock fracture scale based on AE energy and dominant-frequency was established by using the intrinsic relation between the scale of rock fracture and the time-frequency parameters of rock mass. The evolution of crack scale in the process of uniaxial compression was analyzed based on the evaluation model of rock fracture scale. Results show that the AE energy and the dominant-frequency can reflect the crack scale inside the rock. The scale of rock fracture is proportional to the AE energy, which is inversely proportional to the AE dominant-frequency. Signals with low frequency and high energy usually represent large-scale cracks. On the contrary, if the high frequency has low energy value, it indicates a small-scale crack. The theory and method of evaluation of rock rupture scale based on AE time-frequency information (energy, frequency) can describe the failure process of rock crack scale variation characteristics. It provides a way and method for investigating the characterization of fracture size evolution process of rock fracture.


Sign in / Sign up

Export Citation Format

Share Document