Stress wave superposition effect and crack initiation mechanism between two adjacent boreholes

Author(s):  
Chenxi Ding ◽  
Renshu Yang ◽  
Chun Feng
Author(s):  
Ming-Liang Zhu ◽  
Fu-Zhen Xuan ◽  
Zhengdong Wang

The fatigue properties of a low strength weld metal in a dissimilar welding joint in high cycle and very high cycle regimes were investigated by fully reversed axial tests in air at room temperature and 370°C. A clear duplex S-N curve existed as a result of the transition of fatigue failure mode from surface-induced failure to internal-induced failure at 370°C, while the S-N curve was continuously decreased at room temperature. A new model was successfully proposed to predict fatigue life, and interpret the crack initiation modes transition from surface inclusion to interior inclusion. It was concluded that cracks were initiated by competition among non-metallic inclusions, welding pores and discontinuous microstructures in high cycle regime. While in the very high cycle regime, non-metallic inclusions were the dominant crack initiation mechanism which depended on stress level, inclusion size as well as inclusion depth.


2018 ◽  
Vol 165 ◽  
pp. 04006
Author(s):  
Angelika Brueckner-Foit ◽  
Inigo Bacaicoa ◽  
Martin Luetje ◽  
Marcel Wicke ◽  
Andreas Geisert ◽  
...  

The effect of the defect size and morphology on the fatigue damage evolution was analysed in a recycled Al-Si-Cu alloy by micro-computed tomography and scanning electron microscopy. Fatigue tests were performed and the different crack initiation scenarios were characterized and classified. The interaction between shrinkage and gas pores was the key crack initiation mechanism and the ß-Al5FeSi particles did not play any role in the crack initiation phase. However, crack path analysis indicated that there is a certain amount of crack advance by brittle fracture of the β-phase particles. This is in accordance with the findings of tensile tests in which the ductility depended strongly on the iron content.


2018 ◽  
Vol 165 ◽  
pp. 20004
Author(s):  
Igor Milošević ◽  
Benjamin Seisenbacher ◽  
Gerhard Winter ◽  
Florian Grün ◽  
Martin Kober

Modern applications require a special treatment when the conventional specimen size is much larger than the component size. Additional to that, high sophisticated materials are used for highly loaded components. Often the conventional fatigue limit is exceeded and loads are applied in the VHCF regime. Focus was put on the lifetime calculation and the implementation of investigated fatigue data of a X5CrNiCuNb-16-4 type steel. Two specimen geometries with diameters D7.5=7.5 mm and D2.5=2.5 mm were tested at R=-1, at room temperature and up to 109 cycles to failure. The application of different software tools (FEMFAT, fe-safe) showed several issues based on the current results. Results showed a change of crack initiation mechanism to subsurface crack initiation at approx. 2x106 cycles to failure. The gradient based correction of the reference fatigue data showed a good applicability up to 2x106 cylces. The application of fe-safe allows the flexible modification of S/N parameters over the whole cycle range. The usage of the actual material configuration introduced several important questions regarding the fatigue data and the implementation into lifetime calculation tools.


Author(s):  
Songsong Lu ◽  
Richard Cook ◽  
Yi Zhang ◽  
Philippa Reed

A multilayer overlay coating system containing an intermediate intermetallic layer (designated 2IML) is an architecture expected to show good fatigue resistance. Experimental characterisation and modelling simulations were carried out to classify the different crack initiation mechanisms occurring during fatigue of this coating system and to reveal how changes in the layer architecture lead to fatigue improvement. Fatigue improvement is achieved by decreasing the IML-Top layer thickness due to the increased surface crack initiation resistance. However subsurface initiation mechanisms inhibit the improvement (dominated by surface initiation mechanism) achieved by locating the IML-Top layer closer to the top surface.


2018 ◽  
Vol 916 ◽  
pp. 166-169
Author(s):  
Ilhamdi ◽  
Toshifumi Kakiuchi ◽  
Hiromi Miura ◽  
Yoshihiko Uematsu

Tension-tension fatigue tests were conducted using ultrafine-grained commercially pure Titanium (Ti) plates fabricated by multi-directional forging (MDFing). The MDFed pure Ti plates with the thickness of 1 mm were developed aiming at dental implant application. The fatigue properties of MDFed pure Ti plates were superior to those of the conventional rolled pure Ti plates. The higher fatigue strengths in MDFed plates could be attributed to the much finer grains evolved by MDFing. Fatigue crack initiated from specimen surface, when number of cycles to failure was shorter than 106 cycles. In the high cycle fatigue (HCF) region, however, subsurface crack initiation with typical fish-eye feature was recognized in the MDFed pure Ti plate in spite of the thin thickness. Fractographic analyses revealed that no inclusion existed at the center of fish-eye. The subsurface crack initiation mechanism could be related to the inhomogeneity of microstructure with some coarse grains in the inner part of the plate.


2020 ◽  
Vol 130 ◽  
pp. 105276 ◽  
Author(s):  
Ronghua Chen ◽  
Bochuan Li ◽  
Yizhuang Li ◽  
Zhicheng Liu ◽  
Xiangyun Long ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 914 ◽  
Author(s):  
Qingyuan Song ◽  
Yanqing Li ◽  
Lei Wang ◽  
Ruxu Huang ◽  
Chengqi Sun

Frequency is an important factor influencing the fatigue behavior. Regarding to the dwell fatigue, it corresponds to the effect of rise and fall time, which is also an important issue especially for the safety evaluation of structure parts under dwell fatigue loading, such as the engines of aircrafts and the pressure hulls of deep-sea submersibles. In this paper, the effect of rise and fall time (2 s, 20 s, 110 s, and 200 s) on the dwell fatigue behavior is investigated for a high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X with basket-weave microstructure. It is shown that the dwell fatigue life decreases with increasing the rise and fall time, which could be correlated by a linear relation in log–log scale for both the specimen with circular cross section and the specimen with square cross section. The rise and fall time has no influence on the crack initiation mechanism by the scanning electron microscope observation. The cracks initiate from the specimen surface and all the fracture surfaces present multiple crack initiation sites. Moreover, the facet characteristic is observed at some crack initiation sites for both the conventional fatigue and dwell fatigue tests. The paper also indicates that the dwell period of the peak stress reduces the fatigue life and the dwell fatigue life seems to be longer for the specimen with circular cross section than that of the specimen with square cross section.


Sign in / Sign up

Export Citation Format

Share Document