Very High Cycle Fatigue Behavior and Life Prediction of a Low Strength Weld Metal at Moderate Temperature

Author(s):  
Ming-Liang Zhu ◽  
Fu-Zhen Xuan ◽  
Zhengdong Wang

The fatigue properties of a low strength weld metal in a dissimilar welding joint in high cycle and very high cycle regimes were investigated by fully reversed axial tests in air at room temperature and 370°C. A clear duplex S-N curve existed as a result of the transition of fatigue failure mode from surface-induced failure to internal-induced failure at 370°C, while the S-N curve was continuously decreased at room temperature. A new model was successfully proposed to predict fatigue life, and interpret the crack initiation modes transition from surface inclusion to interior inclusion. It was concluded that cracks were initiated by competition among non-metallic inclusions, welding pores and discontinuous microstructures in high cycle regime. While in the very high cycle regime, non-metallic inclusions were the dominant crack initiation mechanism which depended on stress level, inclusion size as well as inclusion depth.

2014 ◽  
Vol 217-218 ◽  
pp. 227-234 ◽  
Author(s):  
Alain Abou Antoun ◽  
Myriam Brochu ◽  
Heinrich Möller

Two objectives were targeted: 1) compare the high cycle fatigue behavior of rheocast aluminum alloy 357 prepared by the swirl enthalpy equilibration device (SEED) and by the Council for Scientific and Industrial Research (CSIR) process, and 2) study the effect of surface liquid segregation (SLS) on the fatigue behavior of the CSIR material. Rectangular hourglass specimens machined from rheocast plates were tested at four stress amplitudes in axial fatigue with a stress ratio of R = -1 and a frequency of 20 Hz. Results obtained for SLS free specimens show that the SEED and the CSIR processes produce rheocast materials with comparable high cycle fatigue properties, 115 MPa at 107 cycles. In order to study the influence of surface liquid segregation, slightly polished specimens with a remaining SLS of nearly 750 microns thick were also tested. According to the results, the SLS reduces the average fatigue strength by approximately 5% (110 MPa vs. 115 MPa at 107 cycles). For SLS free specimens, the fatigue crack initiated at shrinkage cavities, oxide films or in the alpha globules. On the other hand, for specimens with SLS, no crack initiation in the alpha globules was observed. The main crack initiation mechanism was identified to be a deformation incompatibility between regions characterized by higher silicon content compared to nominal eutectic regions. The originality of the work is provided by the rigorous comparative analysis of the fatigue performance of components produced in two different rheocasting facilities, but tested in a single laboratory. It is also the first fundamental research published on the mechanical effect of surface liquid segregation. It confirms that SLS should be removed in critical areas in order to optimize the fatigue resistance of rheocast components.


2018 ◽  
Vol 8 (9) ◽  
pp. 1614 ◽  
Author(s):  
Baohua Nie ◽  
Dongchu Chen ◽  
Zihua Zhao ◽  
Jianglong Zhang ◽  
Yu Meng ◽  
...  

The very high cycle fatigue (VHCF) property of TC21 titanium alloy blunt-notched specimens were investigated by using an ultrasonic fatigue test machine with a frequency of 20 kHz. S–N of blunt-notched specimens illustrated a continuous decrease characteristic with a horizontal line over the 105–109 cycle regimes. However, the fatigue life showed a large scatter for blunt-notched specimens. Blunt-notch significantly reduced the fatigue property in the high cycle and very high cycle regimes compared with that of smooth specimens. The crack initiation modes for blunt-notched specimens in the very high cycle regime can be divided into three types: (i) surface initiation, (ii) subsurface with flat facet, and (iii) subsurface with “facet + fine granular area”. The crack initiation mechanism of blunt-notched specimens is discussed in view of the interaction of notch stress gradient distribution and heterogeneous microstructure. Furthermore, the fatigue limit model based on the theory of critical distance (TCD) was modified for the very high cycle regime, and the scatter of the fatigue property of the blunt-notched specimens were well predicted by using this model.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5358
Author(s):  
Mengxiong Zhao ◽  
Zhenhua Zhao ◽  
Lulu Liu ◽  
Gang Luo ◽  
Wei Chen

Cyclic response and fatigue behavior are sensitive to the microstructure of material induced by heat treatment. In this paper, three sets of high-temperature superalloy Inconel 718 with different heat treatment, namely annealed, aged, and directly aged high quality (DAHQ), are compared. Difference in grain size distribution, phase, and precipitate, etc., were investigated using an optical camera and scanning electron microscopy. Yield and ultimate strength were found to increase obviously after aging heat treatment. Self-heating phenomenon at 20 kHz was attenuated as grain size decreased. There was a transition from cyclic hardening to softening. Very-high cycle fatigue (VHCF) behavior of Inconel 718 was tested using an ultrasonic fatigue device. Crack initiation duration occupied greater than 99% of the total fatigue life. It concluded that average grain size influences VHCF strength and crack initiation mechanism, and that self-heating phenomenon is not a decisive factor on VHCF strength for Inconel 718.


2011 ◽  
Vol 2011 (3) ◽  
pp. 134-153
Author(s):  
Lucjan Witek

Experimental and Numerical Crack Initiation Analysis of the Compressor Blades Working in Resonance ConditionsThis paper presents the results of a complex experimental and numerical crack initiation analysis of the helicopter turbo-engine compressor blades subjected to vibrations. A nonlinear finite element method was utilized to determine the stress state of the blade during the first mode of transverse vibration. In this analysis, the numerical models without defects as well as those with V-notches were defined. The quality of the numerical solution was checked by the convergence analysis. The obtained results were next used as an input data into crack initiation (ε-N) analyses performed for the load time history equivalent to one cycle of the transverse vibration. In the fatigue analysis, the different methods such as: Neuber elastic-plastic strain correction, linear damage summation and Palmgreen-Miner rule were utilized. As a result of ε-N analysis, the number of load cycles to the first fatigue crack appearing in the compressor blades was obtained. Moreover, the influence of the blade vibration amplitude on the number of cycles to the crack initiation was analyzed. Values of the fatigue properties of the blade material were calculated using the Baumel-Seeger and Muralidharan methods. The influence of both the notch radius and values of the UTS of the blade material on the fatigue behavior of the structure was also considered. In the last part of the work, the finite element results were compared with the results of experimental vibration HCF tests performed for the compressor blades.


2018 ◽  
Vol 916 ◽  
pp. 166-169
Author(s):  
Ilhamdi ◽  
Toshifumi Kakiuchi ◽  
Hiromi Miura ◽  
Yoshihiko Uematsu

Tension-tension fatigue tests were conducted using ultrafine-grained commercially pure Titanium (Ti) plates fabricated by multi-directional forging (MDFing). The MDFed pure Ti plates with the thickness of 1 mm were developed aiming at dental implant application. The fatigue properties of MDFed pure Ti plates were superior to those of the conventional rolled pure Ti plates. The higher fatigue strengths in MDFed plates could be attributed to the much finer grains evolved by MDFing. Fatigue crack initiated from specimen surface, when number of cycles to failure was shorter than 106 cycles. In the high cycle fatigue (HCF) region, however, subsurface crack initiation with typical fish-eye feature was recognized in the MDFed pure Ti plate in spite of the thin thickness. Fractographic analyses revealed that no inclusion existed at the center of fish-eye. The subsurface crack initiation mechanism could be related to the inhomogeneity of microstructure with some coarse grains in the inner part of the plate.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1200
Author(s):  
Ashutosh Sharma ◽  
Min Chul Oh ◽  
Byungmin Ahn

We reviewed the research and developments in the field of fatigue failure, focusing on very-high cycle fatigue (VHCF) of metals, alloys, and steels. We also discussed ultrasonic fatigue testing, historical relevance, major testing principles, and equipment. The VHCF behavior of Al, Mg, Ni, Ti, and various types of steels were analyzed. Furthermore, we highlighted the major defects, crack initiation sites, fatigue models, and simulation studies to understand the crack development in VHCF regimes. Finally, we reviewed the details regarding various issues and challenges in the field of VHCF for engineering metals and identified future directions in this area.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 914 ◽  
Author(s):  
Qingyuan Song ◽  
Yanqing Li ◽  
Lei Wang ◽  
Ruxu Huang ◽  
Chengqi Sun

Frequency is an important factor influencing the fatigue behavior. Regarding to the dwell fatigue, it corresponds to the effect of rise and fall time, which is also an important issue especially for the safety evaluation of structure parts under dwell fatigue loading, such as the engines of aircrafts and the pressure hulls of deep-sea submersibles. In this paper, the effect of rise and fall time (2 s, 20 s, 110 s, and 200 s) on the dwell fatigue behavior is investigated for a high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X with basket-weave microstructure. It is shown that the dwell fatigue life decreases with increasing the rise and fall time, which could be correlated by a linear relation in log–log scale for both the specimen with circular cross section and the specimen with square cross section. The rise and fall time has no influence on the crack initiation mechanism by the scanning electron microscope observation. The cracks initiate from the specimen surface and all the fracture surfaces present multiple crack initiation sites. Moreover, the facet characteristic is observed at some crack initiation sites for both the conventional fatigue and dwell fatigue tests. The paper also indicates that the dwell period of the peak stress reduces the fatigue life and the dwell fatigue life seems to be longer for the specimen with circular cross section than that of the specimen with square cross section.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Chao He ◽  
Kazuhiro Kitamura ◽  
Kun Yang ◽  
Yong-jie Liu ◽  
Qing-yuan Wang ◽  
...  

Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz) to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.


2008 ◽  
Vol 41-42 ◽  
pp. 83-90 ◽  
Author(s):  
J.H. Zuo ◽  
Z.G. Wang ◽  
En Hou Han

Investigations have been conducted on the fatigue behavior of Ti-6Al-4V alloy with the bimodal microstructure in air at room temperature, in vacuum at room temperature and in vacuum at low temperature (100K), respectively. The results show that the fatigue life of this alloy is longer in vacuum and/or at low temperature than that in air at room temperature. The combination of vacuum and low temperature can much improve the fatigue properties of this alloy because of their purifying effect on fatigue cracks propagation. SEM observation of fatigue fracture surface indicates that all the fatigue cracks initiate in the sample surface when Nf ≦106 cycles. The above three testing conditions lead to different modes of fatigue crack propagation and therefore much different morphology of fatigue fracture.


Sign in / Sign up

Export Citation Format

Share Document