Linear Accelerator Based Single Fraction Stereotactic Radiosurgery: Sharp Dose Fall off in Normal Tissues Depends on Dose Inhomogeneity in Tumor

Author(s):  
L.X. Hong ◽  
M. Garg ◽  
P. Lasala ◽  
M. Kim ◽  
D. Mah ◽  
...  
2011 ◽  
Vol 38 (3) ◽  
pp. 1239-1247 ◽  
Author(s):  
Linda X. Hong ◽  
Madhur Garg ◽  
Patrick Lasala ◽  
Mimi Kim ◽  
Dennis Mah ◽  
...  

2016 ◽  
Vol 124 (4) ◽  
pp. 1018-1024 ◽  
Author(s):  
Henry S. Park ◽  
Elyn H. Wang ◽  
Charles E. Rutter ◽  
Christopher D. Corso ◽  
Veronica L. Chiang ◽  
...  

OBJECT Single-fraction stereotactic radiosurgery (SRS) is a crucial component in the management of limited brain metastases from non-small cell lung cancer (NSCLC). Intracranial SRS has traditionally been delivered using a frame-based Gamma Knife (GK) platform, but stereotactic modifications to the linear accelerator (LINAC) have made an alternative approach possible. In the absence of definitive prospective trials comparing the efficacy and toxicities of treatment between the 2 techniques, nonclinical factors (such as technology accessibility, costs, and efficiency) may play a larger role in determining which radiosurgery system a facility may choose to install. To the authors’ knowledge, this study is the first to investigate national patterns of GK SRS versus LINAC SRS use and to determine which factors may be associated with the adoption of these radiosurgery systems. METHODS The National Cancer Data Base was used to identify patients > 18 years old with NSCLC who were treated with single-fraction SRS to the brain between 2003 and 2011. Patients who received “SRS not otherwise specified” or who did not receive a radiotherapy dose within the range of 12–24 Gy were excluded to reduce the potential for misclassification. The chi-square test, t-test, and multivariable logistic regression analysis were used to compare potential demographic, clinicopathologic, and health care system predictors of GK versus LINAC SRS use, when appropriate. RESULTS This study included 1780 patients, among whom 1371 (77.0%) received GK SRS and 409 (23.0%) underwent LINAC SRS. Over time, the proportion of patients undergoing LINAC SRS steadily increased, from 3.2% in 2003 to 30.8% in 2011 (p < 0.001). LINAC SRS was adopted more rapidly by community versus academic facilities (overall 29.2% vs 17.2%, p < 0.001). On multivariable analysis, 4 independent predictors of increased LINAC SRS use emerged, including year of diagnosis in 2008–2011 versus 2003–2007 (adjusted OR [AOR] 2.04, 95% CI 1.52–2.73, p < 0.001), community versus academic facility type (AOR 2.04, 95% CI 1.60–2.60, p < 0.001), non-West versus West geographic location (AOR 4.50, 95% CI 2.87–7.09, p < 0.001), and distance from cancer reporting facility of < 20 versus ≥ 20 miles (AOR 1.57, 95% CI 1.21–2.04, p = 0.001). CONCLUSIONS GK remains the most commonly used single-fraction SRS modality for NSCLC brain metastases in the US. However, LINAC-based SRS has been rapidly disseminating in the past decade, especially in the community setting. Wide geographic variation persists in the distribution of GK and LINAC SRS cases. Further comparative effectiveness research will be needed to evaluate the impact of these shifts on SRS-related toxicities, local control, and survival, as well as treatment costs and efficiency.


2004 ◽  
pp. 373-380 ◽  
Author(s):  
Timothy D. Solberg ◽  
Steven J. Goetsch ◽  
Michael T. Selch ◽  
William Melega ◽  
Goran Lacan ◽  
...  

Object. The purpose of this work was to investigate the targeting and dosimetric characteristics of a linear accelerator (LINAC) system dedicated for stereotactic radiosurgery compared with those of a commercial gamma knife (GK) unit. Methods. A phantom was rigidly affixed within a Leksell stereotactic frame and axial computerized tomography scans were obtained using an appropriate stereotactic localization device. Treatment plans were performed, film was inserted into a recessed area, and the phantom was positioned and treated according to each treatment plan. In the case of the LINAC system, four 140° arcs, spanning ± 60° of couch rotation, were used. In the case of the GK unit, all 201 sources were left unplugged. Radiation was delivered using 3- and 8-mm LINAC collimators and 4- and 8-mm collimators of the GK unit. Targeting ability was investigated independently on the dedicated LINAC by using a primate model. Measured 50% spot widths for multisource, single-shot radiation exceeded nominal values in all cases by 38 to 70% for the GK unit and 11 to 33% for the LINAC system. Measured offsets were indicative of submillimeter targeting precision on both devices. In primate studies, the appearance of an magnetic resonance imaging—enhancing lesion coincided with the intended target. Conclusions. Radiosurgery performed using the 3-mm collimator of the dedicated LINAC exhibited characteristics that compared favorably with those of a dedicated GK unit. Overall targeting accuracy in the submillimeter range can be achieved, and dose distributions with sharp falloff can be expected for both devices.


Author(s):  
Constantin Tuleasca ◽  
Mohamed Faouzi ◽  
Philippe Maeder ◽  
Raphael Maire ◽  
Jonathan Knisely ◽  
...  

AbstractVestibular schwannomas (VSs) are benign, slow-growing tumors. Management options include observation, surgery, and radiation. In this retrospective trial, we aimed at evaluating whether biologically effective dose (BED) plays a role in tumor volume changes after single-fraction first intention stereotactic radiosurgery (SRS) for VS. We compiled a single-institution experience (n = 159, Lausanne University Hospital, Switzerland). The indication for SRS was decided after multidisciplinary discussion. Only cases with minimum 3 years follow-up were included. The Koos grading, a reliable method for tumor classification was used. Radiosurgery was performed using Gamma Knife (GK) and a uniform marginal prescription dose of 12 Gy. Mean BED was 66.3 Gy (standard deviation 3.8, range 54.1–73.9). The mean follow-up period was 5.1 years (standard deviation 1.7, range 3–9.2). The primary outcome was changes in 3D volumes after SRS as function of BED and of integral dose received by the VS. Random-effect linear regression model showed that tumor volume significantly and linearly decreased over time with higher BED (p < 0.0001). Changes in tumor volume were also significantly associated with age, sex, number of isocenters, gradient index, and Koos grade. However, the effect of BED on tumor volume change was moderated by time after SRS and Koos grade. Lower integral doses received by the VSs were inversely correlated with BED in relationship with tumor volume changes (p < 0.0001). Six (3.4%) patients needed further intervention. For patients having uniformly received the same marginal dose prescription, higher BED linearly and significantly correlated with tumor volume changes after SRS for VSs. BED could represent a potential new treatment paradigm for patients with benign tumors, such as VSs, for attaining a desired radiobiological effect. This could further increase the efficacy and decrease the toxicity of SRS not only in benign tumors but also in other SRS indications.


1999 ◽  
Vol 77 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Stephen Wan Leung ◽  
Ching-Yeh Hsiung ◽  
Hui-Chun Chen ◽  
Han-Jung Chen ◽  
Sue-Ann Lin

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Nathan C. Rowland ◽  
Jennifer Andrews ◽  
Daxa Patel ◽  
David V. LaBorde ◽  
Adam Nowlan ◽  
...  

Intracranial metastasis of neuroblastoma (IMN) is associated with poor survival. No curative therapy for the treatment of IMN currently exists. Unfractionated radiotherapy may be beneficial in the treatment of IMN given the known radiosensitivity of neuroblastoma as well as its proclivity to metastasize as discrete lesions. We present two patients with IMN treated with Gamma Knife stereotactic radiosurgery (SRS). Single-fraction radiotherapy yielded temporary reduction of tumor burden and stability of disease in both patients. SRS may be a useful palliative tool in the treatment of IMN and expands the overall treatment options for this disease.


1996 ◽  
Vol 85 (6) ◽  
pp. 1013-1019 ◽  
Author(s):  
William M. Mendenhall ◽  
William A. Friedman ◽  
John M. Buatti ◽  
Francis J. Bova

✓ In this paper the authors evaluate the results of linear accelerator (LINAC)—based stereotactic radiosurgery for acoustic schwannomas. Fifty-six patients underwent LINAC-based stereotactic radiosurgery for acoustic schwannomas at the University of Florida between July 1988 and November 1994. Each patient was followed for a minimum of 1 year or until death; no patient was lost to follow up. One or more follow-up magnetic resonance images or computerized tomography scans were obtained in 52 of the 56 patients. Doses ranged between 10 and 22.5 Gy with 69.6% of patients receiving 12.5 to 15 Gy. Thirty-eight patients (68%) were treated with one isocenter and the dose was specified to the 80% isodose line in 71% of patients. Fifty-five patients (98%) achieved local control after treatment. The 5-year actuarial local control rate was 95%. At the time of analysis, 48 patients were alive and free of disease, seven had died of intercurrent disease, and one was alive with disease. Complications developed in 13 patients (23%). The likelihood of complications was related to the dose and treatment volume: 10 to 12.5 Gy to all volumes, three (13%) of 23 patients; 15 to 17.5 Gy to 5.5 cm3 or less, two (9%) of 23 patients; 15 to 17.5 Gy to more than 5.5 cm3, five (71%) of seven patients; and 20 to 22.5 Gy to all volumes, three (100%) of three patients. Linear accelerator—based stereotactic radiosurgery results in a high rate of local control at 5 years. The risk of complications is related to the dose and treatment volume.


Sign in / Sign up

Export Citation Format

Share Document