Using a Patient-Specific Mathematical Model and a Multiobjective IMRT Optimization Algorithm in Treatment Planning for Human Glioblastoma

Author(s):  
D. Corwin ◽  
C.H. Holdsworth ◽  
R. Stewart ◽  
M. Philips ◽  
R. Rockne ◽  
...  
2015 ◽  
Vol 17 (suppl 5) ◽  
pp. v161.1-v161
Author(s):  
Andrea Hawkins-Daarud ◽  
Hani Malone ◽  
Timothy Ung ◽  
Anthony Rosenberg ◽  
Joshua Jacobs ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehran Ashrafi ◽  
Farzan Ghalichi ◽  
Behnam Mirzakouchaki ◽  
Manuel Doblare

AbstractBone remodeling identifies the process of permanent bone change with new bone formation and old bone resorption. Understanding this process is essential in many applications, such as optimizing the treatment of diseases like osteoporosis, maintaining bone density in long-term periods of disuse, or assessing the long-term evolution of the bone surrounding prostheses after implantation. A particular case of study is the bone remodeling process after dental implantation. Despite the overall success of this type of implants, the increasing life expectancy in developed countries has boosted the demand for dental implants in patients with osteoporosis. Although several studies demonstrate a high success rate of dental implants in osteoporotic patients, it is also known that the healing time and the failure rate increase, necessitating the adoption of pharmacological measures to improve bone quality in those patients. However, the general efficacy of these antiresorptive drugs for osteoporotic patients is still controversial, requiring more experimental and clinical studies. In this work, we investigate the effect of different doses of several drugs, used nowadays in osteoporotic patients, on the evolution of bone density after dental implantation. With this aim, we use a pharmacokinetic–pharmacodynamic (PK/PD) mathematical model that includes the effect of antiresorptive drugs on the RANK/RANK-L/OPG pathway, as well as the mechano-chemical coupling with external mechanical loads. This mechano-PK/PD model is then used to analyze the evolution of bone in normal and osteoporotic mandibles after dental implantation with different drug dosages. We show that using antiresorptive agents such as bisphosphonates or denosumab increases bone density and the associated mechanical properties, but at the same time, it also increases bone brittleness. We conclude that, despite the many limitations of these very complex models, the one presented here is capable of predicting qualitatively the evolution of some of the main biological and chemical variables associated with the process of bone remodeling in patients receiving drugs for osteoporosis, so it could be used to optimize dental implant design and coating for osteoporotic patients, as well as the drug dosage protocol for patient-specific treatments.


2011 ◽  
Vol 29 (1) ◽  
pp. 31-48 ◽  
Author(s):  
S. Gu ◽  
G. Chakraborty ◽  
K. Champley ◽  
A. M. Alessio ◽  
J. Claridge ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Rik Bijman ◽  
Linda Rossi ◽  
Tomas Janssen ◽  
Peter de Ruiter ◽  
Baukelien van Triest ◽  
...  

BackgroundWith the large-scale introduction of volumetric modulated arc therapy (VMAT), selection of optimal beam angles for coplanar static-beam IMRT has increasingly become obsolete. Due to unavailability of VMAT in current MR-linacs, the problem has re-gained importance. An application for automated IMRT treatment planning with integrated, patient-specific computer-optimization of beam angles (BAO) was used to systematically investigate computer-aided generation of beam angle class solutions (CS) for replacement of computationally expensive patient-specific BAO. Rectal cancer was used as a model case.Materials and Methods23 patients treated at a Unity MR-linac were included. BAOx plans (x=7-12 beams) were generated for all patients. Analyses of BAO12 plans resulted in CSx class solutions. BAOx plans, CSx plans, and plans with equi-angular setups (EQUIx, x=9-56) were mutually compared.ResultsFor x>7, plan quality for CSx and BAOx was highly similar, while both were superior to EQUIx. E.g. with CS9, bowel/bladder Dmean reduced by 22% [11%, 38%] compared to EQUI9 (p<0.001). For equal plan quality, the number of EQUI beams had to be doubled compared to BAO and CS.ConclusionsComputer-generated beam angle CS could replace individualized BAO without loss in plan quality, while reducing planning complexity and calculation times, and resulting in a simpler clinical workflow. CS and BAO largely outperformed equi-angular treatment. With the developed CS, time consuming beam angle re-optimization in daily adaptive MR-linac treatment could be avoided. Further systematic research on computerized development of beam angle class solutions for MR-linac treatment planning is warranted.


2018 ◽  
Vol 448 ◽  
pp. 66-79 ◽  
Author(s):  
Gouhei Tanaka ◽  
Elisa Domínguez-Hüttinger ◽  
Panayiotis Christodoulides ◽  
Kazuyuki Aihara ◽  
Reiko J. Tanaka

2021 ◽  
pp. 1-9
Author(s):  
Shashwat Tripathi ◽  
Tito Vivas-Buitrago ◽  
Ricardo A. Domingo ◽  
Gaetano De Biase ◽  
Desmond Brown ◽  
...  

OBJECTIVE Recent studies have proposed resection of the T2 FLAIR hyperintensity beyond the T1 contrast enhancement (supramarginal resection [SMR]) for IDH–wild-type glioblastoma (GBM) to further improve patients’ overall survival (OS). GBMs have significant variability in tumor cell density, distribution, and infiltration. Advanced mathematical models based on patient-specific radiographic features have provided new insights into GBM growth kinetics on two important parameters of tumor aggressiveness: proliferation rate (ρ) and diffusion rate (D). The aim of this study was to investigate OS of patients with IDH–wild-type GBM who underwent SMR based on a mathematical model of cell distribution and infiltration profile (tumor invasiveness profile). METHODS Volumetric measurements were obtained from the selected regions of interest from pre- and postoperative MRI studies of included patients. The tumor invasiveness profile (proliferation/diffusion [ρ/D] ratio) was calculated using the following formula: ρ/D ratio = (4π/3)2/3 × (6.106/[VT21/1 − VT11/1])2, where VT2 and VT1 are the preoperative FLAIR and contrast-enhancing volumes, respectively. Patients were split into subgroups based on their tumor invasiveness profiles. In this analysis, tumors were classified as nodular, moderately diffuse, or highly diffuse. RESULTS A total of 101 patients were included. Tumors were classified as nodular (n = 34), moderately diffuse (n = 34), and highly diffuse (n = 33). On multivariate analysis, increasing SMR had a significant positive correlation with OS for moderately and highly diffuse tumors (HR 0.99, 95% CI 0.98–0.99; p = 0.02; and HR 0.98, 95% CI 0.96–0.99; p = 0.04, respectively). On threshold analysis, OS benefit was seen with SMR from 10% to 29%, 10% to 59%, and 30% to 90%, for nodular, moderately diffuse, and highly diffuse, respectively. CONCLUSIONS The impact of SMR on OS for patients with IDH–wild-type GBM is influenced by the degree of tumor invasiveness. The authors’ results show that increasing SMR is associated with increased OS in patients with moderate and highly diffuse IDH–wild-type GBMs. When grouping SMR into 10% intervals, this benefit was seen for all tumor subgroups, although for nodular tumors, the maximum beneficial SMR percentage was considerably lower than in moderate and highly diffuse tumors.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qian Wang ◽  
Yong Tian ◽  
Lili Lin ◽  
Ratnaji Vanga ◽  
Lina Ma

Standard scheduled flight block time (SBT) setting is of great concern for Civil Aviation Administration of China (CAAC) and airlines in China. However, the standard scheduled flight block times are set in the form of on-site meetings in practice and current literature has not provided any efficient mathematical models to calculate the flight block times fairly among the airlines. The objective of this paper is to develop and solve a mathematical model for standard SBT setting with consideration of both fairness and reliability. We use whale optimization algorithm (WOA) and an improved version of the whale optimization algorithm (IWOA) to solve the SBT setting problem. A novel nonlinear update equation of convergence factor for random iterations is used in place of the original linear one in the proposed IWOA algorithm. Experimental results show that the suggested approach is effective, and IWOA performs better than WOA in the concerned problem, whose solutions are better compared to the flight block times released by CAAC. In particular, it is interesting to find that MSE, RMSE, MAE, MAPE and Theil of the reliability in 60%–70% range are always the smallest and the average fairness of airlines is better than that of 60%–75% range. The model and solving approach presented in this article have great potential to be applied by CAAC to determine the standard SBTs strategically.


Sign in / Sign up

Export Citation Format

Share Document