scholarly journals Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating

2011 ◽  
Vol 48 (18) ◽  
pp. 2536-2548 ◽  
Author(s):  
Jing Liu ◽  
Liao-Liang Ke ◽  
Yue-Sheng Wang
2011 ◽  
Vol 189-193 ◽  
pp. 988-992 ◽  
Author(s):  
Jing Liu ◽  
Liao Liang Ke ◽  
Yue Sheng Wang

The two-dimensional thermoelastic sliding frictional contact of the functionally graded materials (FGMs) coated half-plane under plain strain-state deformation is investigated in this paper. A rigid cylindrical punch is sliding over the surface of the FGM coating with the constant velocity, which is small compared with the Rayleigh wave velocity of the medium. Frictional heating is generated at the interface between the punch and FGM coating with its value proportional to contact pressure, friction coefficient and sliding velocity. The material properties of the coating change exponentially along the thickness direction. It is assumed that the area outside the contact region is both thermally insulated and traction-free. The Fourier integral transform method is employed to convert the problem into the Cauchy singular integral equations, which is then solved numerically to obtain the unknown contact pressure and the in-plane component of the surface stress. The effects of the gradient index, Peclet number, and friction coefficient on the thermoelastic contact characteristics are discussed in detail. Numerical results show that the change of the gradient index, Peclet number and friction coefficient can influence the distributions of the surface contact stress.


Author(s):  
Jin-Rae Cho

The numerical calculation of stress intensity factors of two-dimensional functionally graded materials is introduced by an enriched Petrov–Galerkin natural element method (enriched PG-NEM). The overall trial displacement field is basically approximated in terms of Laplace interpolation functions and it is enriched by the near-tip asymptotic displacement field. The overall strain and stress fields which were approximated by PG-NEM were smoothened and enhanced by the patch recovery. The modified interaction integral [Formula: see text] is used to evaluate the stress intensity factors of functionally graded materials with the spatially varying elastic modulus. The validity of present method is justified through the evaluation of crack-tip stress distributions and the stress intensity factors of four numerical examples. It has been found that the proposed method effectively and successfully captures the near-tip stress singularity with a remarkably improved accuracy, even with the remarkably coarse grid, when compared with an extremely fine grid and the analytical and numerical reference solutions.


2017 ◽  
Vol 23 (7) ◽  
pp. 1061-1080 ◽  
Author(s):  
Ilya I Kudish ◽  
Sergey S Volkov ◽  
Andrey S Vasiliev ◽  
Sergey M Aizikovich

Over the last couple decades coatings attract more and more attention in practical applications. The present study addresses a question which is not well studied: how coated surfaces behave in lubricated contacts? In other words, this is a study of the effectiveness of functionally graded materials in heavily loaded point elastohydrodynamically lubricated contacts with straight lubricant entrainment. As a part of the study, some criteria of coating effectiveness are introduced and discussed. More specifically, the behavior of main parameters such as the lubrication film thickness and the frictional force in point heavily loaded lubricated contacts of functionally graded elastic materials are considered. The problem is studied based on the method of matched asymptotic expansions which allows us to split the problem into two separate problems: a dry contact problems for functionally graded elastic materials and an elastohydrodynamically lubricated problem for functionally graded materials. The elastohydrodynamically lubricated problem uses as input data not only the operational and physical parameters of the materials and lubricant but also the asymptotic behavior of the dry contact problem solution near the contact boundaries. Therefore, a sequence of two problems must be solved: the dry contact problems for functionally graded elastic materials and the elastohydrodynamically lubricated problem for functionally graded materials. Similar methods have been used for the analysis of an elastohydrodynamically lubricated problem for heavily loaded line contacts of functionally graded materials. The dry contact problem will be analyzed in Part 1 of the paper based on a semi-analytical bilateral method which produces correct asymptotic solutions for thin and thick coatings. The analytical expressions for contact pressure are obtained and analyzed for various combinations of coating thicknesses and elastic properties. The elastohydrodynamically lubricated problem will be considered in Part 2 of the paper based on the method of matched asymptotic expansions. In the analysis of the elastohydrodynamically lubricated problem, as in the case of homogeneous contact materials, it is shown that the whole contact region can be subdivided into three subregions: the central one which is adjacent to the other two regions occupied by the ends of the zones. The central region can be subdivided into the Hertzian region and then adjacent to it inlet and exit zones which, in turn, are adjacent to the inlet and exit boundaries of the contact, respectively. In the Hertzian region the elastohydrodynamically lubricated problem solution is very close to the solution of the corresponding dry (i.e. non-lubricated) contact problem for functionally graded elastic materials which have been analyzed. In the central region in the inlet and exit zones of a heavily loaded point elastohydrodynamically lubricated contact, the elastohydrodynamically lubricated problem for functionally graded elastic materials using certain scaling transforms can be reduced to asymptotically valid equations identical to the ones obtained in the inlet and exit zones of heavily loaded line elastohydrodynamically lubricated contacts for homogeneous elastic materials. Therefore, many of the well known properties of heavily loaded line elastohydrodynamically lubricated contacts for homogeneous elastic materials are also valid for heavily loaded point elastohydrodynamically lubricated contacts for functionally graded elastic materials. These asymptotically valid equations can be analyzed and numerically solved based on stable methods using a specific regularization approach, which were developed for lubricated line contacts. Also, this asymptotic analysis leads to an easy analytical derivation of formulas for the lubrication film thickness which take into account the inhomogeneity of the elastic materials. As a result of this analysis, some criteria for lubrication film thickness increase and friction force reduction are proposed. These criteria depend on lubricant properties as well as the properties of functionally graded elastic materials involved in lubricated contacts. Such a sequential solution of the elastohydrodynamically lubricated problem for functionally graded materials makes it perfectly clear what the dependence is of elastohydrodynamically lubricated contact parameters on the solid material (including the coating) and lubricant properties.


Sign in / Sign up

Export Citation Format

Share Document