scholarly journals Two-dimensional Beltrami–Michell equations for a mixture of two linear elastic solids and some applications using the Airy stress function

2015 ◽  
Vol 59 ◽  
pp. 140-146 ◽  
Author(s):  
Süleyman Muti ◽  
M. Salih Dokuz
2001 ◽  
Vol 68 (4) ◽  
pp. 528-536
Author(s):  
J. J. Luo ◽  
I. M. Daniel

A general correlation is derived between macroscopic stresses/strains and microscopic deformation on the damage surfaces for inhomogeneous elastic solids with two-dimensional damage. Assuming linear elastic behavior for the undamaged materials, the macroscopic deformation associated with nonlinear strains, or damage strains, is shown to be the weighted sum of the microscopic deformations on the damage surfaces. For inhomogeneous materials with periodic structures (laminated composites, for example) and various identifiable damage modes, simple relations are derived between the macroscopic deformation and microscopic damage. When the number of identifiable damage modes is less than or equal to the number of relevant measurable macroscopic strains, the correlation can be used to evaluate the damage progression from simple macroscopic stress and strain measurements. The simple case of a unidirectional fiber-reinforced composite under longitudinal load is used to show how the results can help detect and characterize the damage using macroscopic measurements, without resorting to assumptions of detailed microscopic deformation mechanisms.


2021 ◽  
pp. 108128652110255
Author(s):  
Néstor Darío Barulich ◽  
Aharon Deutsch ◽  
Moshe Eisenberger ◽  
Luis Augusto Godoy ◽  
Patricia Mónica Dardati

This paper presents a new displacement solution based on a Modified Fourier Series (MFS) for isotropic linear elastic solids under plane strain or plane stress states subject to continuous displacement and traction boundary conditions in a two-dimensional rectangular domain. In contrast with existing approaches that are restricted to Fourier series with a rate of convergence of second order O(m-2), the MFS allows increasing the rate of convergence of the solution. The governing Partial Differential Equations (PDEs) are satisfied exactly by two displacement solutions while the boundary conditions are approximated after solving a finite system of algebraic equations. Numerical results for a solution with an MFS with rate of convergence O(m-3) are compared with results from existing numerical and analytical methods, showing the enhanced behavior of the present solution.


Sign in / Sign up

Export Citation Format

Share Document