A preliminary study of the failure mechanisms of cascading landslide dams

2015 ◽  
Vol 30 (3) ◽  
pp. 223-234 ◽  
Author(s):  
Gordon G.D. Zhou ◽  
Peng Cui ◽  
Xinghua Zhu ◽  
Jinbo Tang ◽  
Huayong Chen ◽  
...  
Author(s):  
Wen-I. Liao ◽  
Bor-Han Lee ◽  
Chin-Hsiung Loh

This paper describes procedures of fragility analysis for building structures in earthquake loss estimation methodology in Taiwan (Haz-Taiwan system). The main objective of this paper is to define the building classification, relative damage states and provide the fragility functions for the general building structures in Taiwan that by utilize the available data. First, the available classes of the building structures in Taiwan are reviewed and a classification based on the available data to be implemented in Haz-Taiwan system is proposed. Second, the description of failure mechanisms and performance criteria based on the collected experimental data for different damage states that adopted in this research are proposed. Third, the theoretical methodology of the fragility analysis for the adopted building classes is introduced. Parameters for describing the fragility functions for each class are also generated and shown in the Table.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 746 ◽  
Author(s):  
Emilia Wirth ◽  
Lilia Sabantina ◽  
Marcus Weber ◽  
Karin Finsterbusch ◽  
Andrea Ehrmann

Electrospinning can be used to create nanofiber mats for diverse applications, from wound dressings and tissue engineering to filters for medical and biotechnological applications. In most of these applications, it is necessary to fix the nanofiber mat on a macroscopic textile fabric, on another nanofiber mat or within a frame to keep it at the desired position. Due to their extremely low thickness and areal mass, however, nanofiber mats are easily destroyed by sewing, and in several situations glued bonds are too thick and not flexible enough. Here we report on ultrasonic welding of polyacrylonitrile nanofiber mats, suggesting this method as a joining process without destruction of the mat morphology for thermoplastic nanofiber mats. A variety of welding patterns results in different adhesion forces between both joined nanofiber mats and different failure mechanisms, with some welding patterns enabling bonding stronger than the mats themselves. Our findings show that ultrasonic welding is a possible joining method for polyacrylonitrile nanofiber mats.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hongchao Zheng ◽  
Zhenming Shi ◽  
Danyi Shen ◽  
Ming Peng ◽  
Kevin J. Hanley ◽  
...  

Numerous landslide dams have been induced in recent years as a result of frequent earthquakes and extreme climate hazards. Landslide dams present serious threats to lives and properties downstream due to potentially breaching floods from the impounded lakes. To investigate the factors influencing the stability of landslide dams, a large database has been established based on an in-depth investigation of 1,737 landslide dam cases. The effects of triggers, dam materials, and geomorphic characteristics of landslide dams on dam stability are comprehensively analyzed. Various evaluation indexes of landslide dam stability are assessed based on this database, and stability evaluation can be further improved by considering the dam materials. Stability analyses of aftershocks, surges, and artificial engineering measures on landslide dams are summarized. Overtopping and seepage failures are the most common failure modes of landslide dams. The failure processes and mechanisms of landslide dams caused by overtopping and seepage are reviewed from the perspective of model experiments and numerical analyses. Finally, the research gaps are highlighted, and pathways to achieve a more complete understanding of landslide dam stability are suggested. This comprehensive review of the recent advances in stability and failure mechanisms of landslide dams can serve as a key reference for stability prediction and emergency risk mitigation.


2021 ◽  
pp. 127252
Author(s):  
Chen Chen ◽  
Huanyun Li ◽  
Jiankang Chen ◽  
Jianmin Zhang ◽  
Limin Zhang ◽  
...  

Author(s):  
John H.L. Watson ◽  
John L. Swedo ◽  
R.W. Talley

A preliminary study of human mammary carcinoma on the ultrastructural level is reported for a metastatic, subcutaneous nodule, obtained as a surgical biopsy. The patient's tumor had responded favorably to a series of hormonal therapies, including androgens, estrogens, progestins, and corticoids for recurring nodules over eight years. The pertinent nodule was removed from the region of the gluteal maximus, two weeks following stilbestrol therapy. It was about 1.5 cms in diameter, and was located within the dermis. Pieces from it were fixed immediately in cold fixatives: phosphate buffered osmium tetroxide, glutaraldehyde, and paraformaldehyde. Embedment in each case was in Vestopal W. Contrasting was done with combinations of uranyl acetate and lead hydroxide.


Author(s):  
H.D. Geissinger ◽  
C.K. McDonald-Taylor

A new strain of mice, which had arisen by mutation from a dystrophic mouse colony was designated ‘mdx’, because the genetic defect, which manifests itself in brief periods of muscle destruction followed by episodes of muscle regeneration appears to be X-linked. Further studies of histopathological changes in muscle from ‘mdx’ mice at the light microscopic or electron microscopic levels have been published, but only one preliminary study has been on the tibialis anterior (TA) of ‘mdx’ mice less than four weeks old. Lesions in the ‘mdx’ mice vary between different muscles, and centronucleation of fibers in all muscles studied so far appears to be especially prominent in older mice. Lesions in young ‘mdx’ mice have not been studied extensively, and the results appear to be at variance with one another. The degenerative and regenerative aspects of the lesions in the TA of 23 to 26-day-old ‘mdx’ mice appear to vary quantitatively.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Author(s):  
J P Cassella ◽  
V Salih ◽  
T R Graham

Left ventricular assist systems are being developed for eventual long term or permanent implantation as an alternative to heart transplantation in patients unsuitable for or denied the transplant option. Evaluation of the effects of these devices upon normal physiology is required. A preliminary study was conducted to evaluate the morphology of aortic tissue from calves implanted with a pneumatic Left Ventricular Assist device-LVAD. Two 3 month old heifer calves (calf 1 and calf 2) were electively explanted after 128 days and 47 days respectively. Descending thoracic aortic tissue from both animals was removed immediately post mortem and placed into karnovsky’s fixative. The tissue was subsequently processed for transmission electron microscopy (TEM). Some aortic tissue was fixed in neutral buffered formalin and processed for routine light microscopy.


Author(s):  
Robert C. Cieslinski ◽  
H. Craig Silvis ◽  
Daniel J. Murray

An understanding of the mechanical behavior polymers in the ductile-brittle transition region will result in materials with improved properties. A technique has been developed that allows the realtime observation of dynamic plane stress failure mechanisms in the transmission electron microscope. With the addition of a cryo-tensile stage, this technique has been extented to -173°C, allowing the observation of deformation during the ductile-brittle transition.The technique makes use of an annealed copper cartridge in which a thin section of bulk polymer specimen is bonded and plastically deformed in tension in the TEM using a screw-driven tensile stage. In contrast to previous deformation studies on solvent-cast films, this technique can examine the frozen-in morphology of a molded part.The deformation behavior of polypropylene and polypropylene impact modified with EPDM (ethylene-propylene diene modified) and PE (polyethylene) rubbers were investigated as function of temperature and the molecular weight of the impact modifier.


Sign in / Sign up

Export Citation Format

Share Document