Thermal radiation therapy of biomagnetic fluid flow in the presence of localized magnetic field

2018 ◽  
Vol 132 ◽  
pp. 457-465 ◽  
Author(s):  
Sadia Siddiqa ◽  
S.B. Naqvi ◽  
Naheed Begum ◽  
S.E. Awan ◽  
M.A. Hossain
2017 ◽  
Vol 131-132 ◽  
pp. 451-458 ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
S. Safdar ◽  
M.A. Hossain ◽  
Abdullah A.A.A. Al-Rashed

2021 ◽  
Vol 26 (1) ◽  
pp. 122-134
Author(s):  
P. Pramod Kumar ◽  
Bala Siddulu Malga ◽  
Lakshmi Appidi ◽  
Sweta Matta

AbstractThe principal objective of the present paper is to know the reaction of thermal radiation and the effects of magnetic fields on a viscous dissipative free convection fluid flow past an inclined infinite plate in the presence of an induced magnetic field. The Galerkin finite element technique is applied to solve the nonlinear coupled partial differential equations and effects of thermal radiation and other physical and flow parameters on velocity, induced magnetic field, along with temperature profiles are explained through graphs. It is noticed that as the thermal radiation increases velocity and temperature profiles decrease and the induced magnetic field profiles increases.


2019 ◽  
Vol 473 ◽  
pp. 42-50 ◽  
Author(s):  
S. Morteza Mousavi ◽  
A. Ali Rabienataj Darzi ◽  
Omid ali Akbari ◽  
Davood Toghraie ◽  
Ali Marzban

2021 ◽  
Vol 10 (1) ◽  
pp. 343-362
Author(s):  
Suresha Suraiah Palaiah ◽  
Hussain Basha ◽  
Gudala Janardhana Reddy

Abstract Contemporary investigation studies the silent features of the dissipative free convection couple stress fluid flow over a cylinder under the action of magnetic field, thermal radiation and porous medium with chemical reaction effect. Present two-dimensional viscous incompressible physical model is designed based on the considered flow geometry. Present physical problem gives the highly complicated nonlinear coupled partial differential equations (PDE's) which are not amenable to any of the known techniques. Thus, unconditionally stable, most accurate and speed converging with flexible finite difference implicit technique is utilized to simplify the dimensionless flow field equations. It is apparent from the current results that; the velocity profiles are diminished with enhancing values of magnetic field. Temperature profile increases with enhancing values of thermal radiation parameter. Velocity contours deviates away from the wall with enhancing magnetic parameter. Also, the effects of magnetic field, porous medium, thermal radiation, chemical reaction, buoyancy ratio parameter and Eckert number on couple stress flow velocity, temperature, and concentration profiles are studied. However, the present study has good number of applications in the various fields of engineering such as; polymer processing, solidification of liquid crystals, colloidal solutions, synovial joints, geophysics, chemical engineering, astrophysics and nuclear reactors etc. Finally, the current solutions are validated with the available results in the literature review and found to be in good agreement.


Author(s):  
S. Morteza Mousavi ◽  
Mousa Farhadi ◽  
Kurosh Sedighi

In this paper, biomagnetic fluid flow in a three-dimensional channel in the presence of obstacles and under the influence of a magnetic field is studied numerically. The magnetic field is generated by a wire carrying electric current. The mathematical model of biomagnetic fluid dynamics which is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics is used for the problem formulation. A computational grid which accurately covers the magnetic force is used for the discretisation of computational domain. The flow field is studied in the different arrangements of the obstacles and diverse magnetic field strengths. The results show that the flow pattern is drastically influenced by the applied magnetic field. Applying the magnetic field causes a secondary flow that affects the velocity distribution considerably. The magnetic force also reduces the maximum axial velocity. Furthermore, the magnetic field has a considerable impact on the recirculation zones behind the obstacles. The magnetic field makes the recirculation zones smaller. This study indicates that applying the magnetic field increases the axial drag coefficients of the obstacles significantly (in a case, by 40.15%).


Author(s):  
Zachariah Mbugua Mburu ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

Abstract This study reports on combined thermal radiation, chemical reaction, and magnetic field effects on entropy generation in an unsteady nanofluid flow past an inclined cylinder using the Buongiorno model. We consider the impact of viscous dissipation, velocity slip conditions, thermal slip conditions, and the Brownian motion. The transport equations governing the flow are solved using an overlapping grid spectral collocation method. The results indicate that entropy generation is suppressed significantly by thermal radiation and chemical reaction parameters but enhanced with the magnetic field, viscous dissipation, the Brinkman number, and the Reynolds number. Also, fluid flow variables are affected by the thermophoresis parameter, the angle of cylinder inclination, and the Richardson number. We present the findings of the skin friction coefficient, the Nusselt number, and the Sherwood number. The model is applicable in fields such as the petroleum industry, building industries, and medicine.


Sign in / Sign up

Export Citation Format

Share Document