Experimental and numerical study on film cooling effectiveness of an annular cascade endwall with different slot configuration

2020 ◽  
Vol 158 ◽  
pp. 106517
Author(s):  
Zhi Tao ◽  
Yunjia Yao ◽  
Peiyuan Zhu ◽  
Liming Song ◽  
Jun Li
2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Fu-qiang Wang ◽  
Jian Pu ◽  
Jian-hua Wang ◽  
Wei-dong Xia

Abstract Film-hole can be often blocked by thermal-barrier coatings (TBCs) spraying, resulting in the variations of aerodynamic and thermal performances of film cooling. In this study, a numerical study of the blockage effect on the film cooling effectiveness of inclined cylindrical-holes was carried out on a concave surface to simulate the airfoil pressure side. Three typical blowing ratios (BRs) of 0.5, 1.0, and 1.5 were chosen at an engine-similar density ratio (DR) of 2.0. Two common inclination angles of 30 deg and 45 deg were designed. The blockage ratios were adjusted from 0 to 20%. The results indicated the blockage could enhance the penetration of film cooling flow to the mainstream. Thus, the averaged effectiveness and coolant coverage area were reduced. Moreover, the pressure loss inside of the hole was increased. With the increase of BR, the decrement of film cooling effectiveness caused by blockage rapidly increased. At BR = 1.5, the decrement could be acquired up to 70% for a blockage ratio of 20%. The decrement of film cooling effectiveness caused by blockage was nearly nonsensitive to the injection angle; however, the larger angle could generate the higher increment of pressure loss caused by blockage. A new design method for the couple scheme of film cooling and TBC was proposed, i.e., increasing the inlet diameter according to the blockage ratio before TBC spraying. In comparison with the original unblocked-hole, the enlarged blocked-hole not only kept the nearly same area-averaged effectiveness but also reduced slightly the pressure loss inside of the hole. Unfortunately, application of enlarged blocked-hole at large BR could lead to a more obvious reduction of effectiveness near hole-exit, in comparison with the original common-hole.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


Author(s):  
Mukesh Prakash Mishra ◽  
A K Sahani ◽  
Sunil Chandel ◽  
R K Mishra

Abstract In the present work numerical study of full coverage film cooling on an adiabatic flat plate is carried out. Cooling performance of three configurations of cylindrical holes is studied with downstream injection, upstream injection and mixed injection. In mixed injection configuration one column of holes inject in downstream direction and the holes in the adjacent column inject in the upstream direction. Numerical simulations are carried out at different velocity ratios and circumferentially averaged value of adiabatic film cooling effectiveness is estimated. Simulation results indicate that the mixed injection configuration has better and more uniform cooling, throughout the perforated plate, than with downstream injection. The difference is greater with increase in the velocity ratio. Configuration with upstream injection gives better cooling than mixed injection at front few rows of cooling holes but it shows poorer performance with downstream injection in the downstream rows of cooling holes. The obtained results from this study can be an invaluable input for highly loaded combustion chambers.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

Secondary holes to a main film cooling hole are used to improve film cooling performance by creating anti-kidney vortices. The effects of injection angle of the secondary holes on both film cooling effectiveness and surrounding thermal and flow fields are investigated in this numerical study. Two kinds of primary hole shapes are adopted. One is a cylindrical hole, the other is a horn-shaped hole which is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. Two smaller cylindrical holes, the secondary holes, are located symmetrically about the centerline and downstream of the primary hole. Three compound injection angles (α = 30°, 45° and 60°, β = 30°) of the secondary holes are analyzed while the injection angle of the primary hole is kept at 45°. Cases with various blowing ratios are computed. It is shown from the simulation that cooling effectiveness of secondary holes with a horn-shaped primary hole is better than that with a cylindrical primary hole, especially at high blowing ratios. With a cylindrical primary hole, increasing inclination angle of the secondary holes provides better cooling effectiveness because the anti-kidney vortices created by shallow secondary holes cannot counteract the kidney vortex pairs adequately, enhancing mixing of main flow and coolant. For secondary holes with a horn-shaped primary hole, large secondary hole inclination angles provide better cooling performance at low blowing ratios; but, at high blowing ratios, secondary holes with small inclination angles are more effective, as the film coverage becomes wider in the downstream area.


2018 ◽  
Vol 16 ◽  
pp. 57-71 ◽  
Author(s):  
Farouk Kebir ◽  
Azzeddine Khorsi

In order to improve the cooling effectiveness of the film, a numerical study was conducted to study the effects of different film-cooled angles on surface heat transfer. In this work CFD simulation has revealed the difference of injection angles ranging from 35°,45°,55°,65° and 90° with different blowing, where the low blowing ratios are represented by M = 0.5, and the high blowing ratios by M = 1.0 and 1.5. And the turbulence closure is done with the help of the k - ω shear stress transport (SST) turbulence model. It is found that the stream-wise variations in the angles of the holes do not really provide a significant change in the adiabatic film cooling effectiveness results. On the other hand, the results indicate that the hole of angles 35°and 45° improved the centerline and laterally averaged adiabatic effectiveness, and the effectiveness decrease particularly at high blowing ratios.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

In search of improved cooling of gas turbine blades, the thermal performances of two different film cooling hole geometries (horn-shaped and cylindrical) are investigated in this numerical study. The horn-shaped hole is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. The two hole shapes are evaluated singly and in tandem. The tandem geometry assumes three configurations made by locating the cylindrical hole at three different positions relative to the horn-shaped hole such that their two axes remain parallel to one another. One has the cylindrical hole downstream from the center of the horn-shaped hole, a second has the cylindrical hole to the left of (as seen by the flow emerging from the horn-shaped hole) and at the same streamwise location as the horn-shaped hole (θ = 90°) and the third has an intermediate geometry between those two geometries (downstream and to the left of the horn-shaped hole - θ = 45°). It is shown from the simulation results that the cooling effectiveness values for the θ = 45° and 90° cases are much better than that for θ = 0° (the first case), and the configuration with θ = 45° exhibits the best cooling performance of the three tandem arrangements. These improvements are attributed to the interaction of vortices from the two different holes, which weakens the counter-rotating vortex pairs inherent to film cooling jet to freestream interaction, counteracts with the lift forces, enhances transverse tensile forces and, thus, enlarges the film coverage zone by widening the flow attachment region. Overall, this research reveals that integration of horn-shaped and cylindrical holes provides much better film cooling effectiveness than cases where two cylindrical film cooling holes are applied with the same tandem configuration.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical simulations were performed to predict the effect of cavity purge flow on the rotating blade platform in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. Simulations were carried out with a sliding mesh for the rotor under three rotating speeds (2000, 2550 and 3000 rpm) and three purge-to-mainstream mass flow ratios (0.5%, 1% and 1.5%) to investigate the effects of rotating speed and coolant purging rate on the rotating blade platform film cooling. The adiabatic film cooling effectiveness was evaluated using the adiabatic wall temperatures with and without coolant purging to examine the true effect of coolant protection. The film cooling effectiveness increases with increasing coolant purging flow ratio from 0.5% to 1.5% of mainstream. Higher rotating speed also enhances film cooling effectiveness for the range of rotating speed considered. The predicted laterally averaged adiabatic film cooling effectiveness is in good agreement with the corresponding experiment data except for the platform leading edge region. However, the detailed effectiveness distribution on the platform is not well predicted by this study. In addition, the detailed instantaneous film cooling effectiveness and the associated heat transfer coefficients for four different time phases are also reported.


Author(s):  
Fu-qiang Wang ◽  
Jian Pu ◽  
Jian-hua Wang ◽  
Wei-dong Xia

Abstract Film-hole can be often blocked by the thermal-barrier coatings (TBC) spraying, resulting in the variations of film cooling performance and pressure loss. In this work, a numerical study of the effect of blockage ratio on the film cooling effectiveness of inclined cylindrical-holes was carried out on a concave surface to simulate the airfoil pressure side. Three typical blowing ratios (BRs) of 0.5, 1.0 and 1.5 were chosen at an engine-similar density ratio (DR) of 2.0. Two common inclination angles of 30° and 45° were designed. The blockage ratios were adjusted from 0 to 20%. The results indicated that the blockage near the trailing edge of hole-exit could enhance the penetration of film cooling flow to the mainstream. Thus, the averaged effectiveness and coolant coverage area were reduced. Moreover, the pressure loss inside of hole was increased. With the increase of BR, the decrement of film cooling effectiveness caused by blockage rapidly enhanced. At BR = 1.5, the decrement could be acquired up to 70% for a blockage ratio of 20%. The decrement of film cooling effectiveness caused by blockage was nearly non-sensitive to the injection angle; however, the larger injection angle could generate the higher increment of pressure loss caused by blockage. A new design method for the couple scheme of film-cooling and TBC was proposed, i.e. increasing the inlet diameter according to the blockage ratio before TBC spraying. In comparison with the original unblocked-hole, the enlarged blocked-hole not only can keep the nearly same area-averaged effectiveness, but also can reduce slightly the pressure loss inside of hole. The smaller injection angle could obtain the larger reduction of pressure loss. Unfortunately, application of enlarged blocked-hole at large BR could lead to a more obvious reduction of effectiveness near hole-exit, in comparison with the original common-hole.


Sign in / Sign up

Export Citation Format

Share Document