scholarly journals A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope

Immunity ◽  
2021 ◽  
Vol 54 (10) ◽  
pp. 2399-2416.e6 ◽  
Author(s):  
Laura A. VanBlargan ◽  
Lucas J. Adams ◽  
Zhuoming Liu ◽  
Rita E. Chen ◽  
Pavlo Gilchuk ◽  
...  
2020 ◽  
Vol 27 ◽  
Author(s):  
Fırat Kurt

: Oligopeptide transporter 3 (OPT3) proteins are one of the subsets of OPT clade, yet little is known about these transporters. Therefore, homolog OPT3 proteins in several plant species were investigated and characterized using bioinformatical tools. Motif and co-expression analyses showed that OPT3 proteins may be involved in both biotic and abiotic stress responses as well as growth and developmental processes. AtOPT3 usually seemed to take part in Fe homeostasis whereas ZmOPT3 putatively interacted with proteins involved in various biological processes from plant defense system to stress responses. Glutathione (GSH), as a putative alternative chelating agent, was used in the AtOPT3 and ZmOPT3 docking analyses to identify their putative binding residues. The information given in this study will contribute to the understanding of OPT3 proteins’ interactions in various pathways and to the selection of potential ligands for OPT3s.


2015 ◽  
Vol 16 (8) ◽  
pp. 701-717 ◽  
Author(s):  
Izabella Pena Neshich ◽  
Leticia Nishimura ◽  
Fabio de Moraes ◽  
Jose Salim ◽  
Fabian Villalta-Romero ◽  
...  

2021 ◽  
Author(s):  
Ying Xia ◽  
Chun-Qiu Xia ◽  
Xiaoyong Pan ◽  
Hong-Bin Shen

Abstract Knowledge of the interactions between proteins and nucleic acids is the basis of understanding various biological activities and designing new drugs. How to accurately identify the nucleic-acid-binding residues remains a challenging task. In this paper, we propose an accurate predictor, GraphBind, for identifying nucleic-acid-binding residues on proteins based on an end-to-end graph neural network. Considering that binding sites often behave in highly conservative patterns on local tertiary structures, we first construct graphs based on the structural contexts of target residues and their spatial neighborhood. Then, hierarchical graph neural networks (HGNNs) are used to embed the latent local patterns of structural and bio-physicochemical characteristics for binding residue recognition. We comprehensively evaluate GraphBind on DNA/RNA benchmark datasets. The results demonstrate the superior performance of GraphBind than state-of-the-art methods. Moreover, GraphBind is extended to other ligand-binding residue prediction to verify its generalization capability. Web server of GraphBind is freely available at http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/.


2021 ◽  
pp. 100613
Author(s):  
Debasish Paul ◽  
Imdadul Haque Sharif ◽  
Abu Sayem ◽  
Hossain Ahmed ◽  
Abu Saleh ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuning Chen ◽  
Ya-Nan Zhang ◽  
Renhong Yan ◽  
Guifeng Wang ◽  
Yuanyuan Zhang ◽  
...  

AbstractThe evolution of coronaviruses, such as SARS-CoV-2, makes broad-spectrum coronavirus preventional or therapeutical strategies highly sought after. Here we report a human angiotensin-converting enzyme 2 (ACE2)-targeting monoclonal antibody, 3E8, blocked the S1-subunits and pseudo-typed virus constructs from multiple coronaviruses including SARS-CoV-2, SARS-CoV-2 mutant variants (SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1, and P.1), SARS-CoV and HCoV-NL63, without markedly affecting the physiological activities of ACE2 or causing severe toxicity in ACE2 “knock-in” mice. 3E8 also blocked live SARS-CoV-2 infection in vitro and in a prophylactic mouse model of COVID-19. Cryo-EM and “alanine walk” studies revealed the key binding residues on ACE2 interacting with the CDR3 domain of 3E8 heavy chain. Although full evaluation of safety in non-human primates is necessary before clinical development of 3E8, we provided a potentially potent and “broad-spectrum” management strategy against all coronaviruses that utilize ACE2 as entry receptors and disclosed an anti-coronavirus epitope on human ACE2.


2019 ◽  
Vol 15 (12) ◽  
pp. e1008101 ◽  
Author(s):  
Helen E. McNeil ◽  
Ilyas Alav ◽  
Ricardo Corona Torres ◽  
Amanda E. Rossiter ◽  
Eve Laycock ◽  
...  

2012 ◽  
Vol 302 (9) ◽  
pp. C1293-C1305 ◽  
Author(s):  
Monica Sala-Rabanal ◽  
Bruce A. Hirayama ◽  
Donald D. F. Loo ◽  
Vincent Chaptal ◽  
Jeff Abramson ◽  
...  

The Na+-glucose cotransporter hSGLT1 is a member of a class of membrane proteins that harness Na+ electrochemical gradients to drive uphill solute transport. Although hSGLT1 belongs to one gene family (SLC5), recent structural studies of bacterial Na+ cotransporters have shown that Na+ transporters in different gene families have the same structural fold. We have constructed homology models of hSGLT1 in two conformations, the inward-facing occluded (based on vSGLT) and the outward open conformations (based on Mhp1), mutated in turn each of the conserved gates and ligand binding residues, expressed the SGLT1 mutants in Xenopus oocytes, and determined the functional consequences using biophysical and biochemical assays. The results establish that mutating the ligand binding residues produces profound changes in the ligand affinity (the half-saturation concentration, K0.5); e.g., mutating sugar binding residues increases the glucose K0.5 by up to three orders of magnitude. Mutation of the external gate residues increases the Na+ to sugar transport stoichiometry, demonstrating that these residues are critical for efficient cotransport. The changes in phlorizin inhibition constant ( Ki) are proportional to the changes in sugar K0.5, except in the case of F101C, where phlorizin Ki increases by orders of magnitude without a change in glucose K0.5. We conclude that glucose and phlorizin occupy the same binding site and that F101 is involved in binding to the phloretin group of the inhibitor. Substituted-cysteine accessibility methods show that the cysteine residues at the position of the gates and sugar binding site are largely accessible only to external hydrophilic methanethiosulfonate reagents in the presence of external Na+, demonstrating that the external sugar (and phlorizin) binding vestibule is opened by the presence of external Na+ and closes after the binding of sugar and phlorizin. Overall, the present results provide a bridge between kinetics and structural studies of cotransporters.


Sign in / Sign up

Export Citation Format

Share Document