Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici

2015 ◽  
Vol 75 ◽  
pp. 150-158 ◽  
Author(s):  
D. Jasso de Rodríguez ◽  
F.A. Trejo-González ◽  
R. Rodríguez-García ◽  
M.L.V. Díaz-Jimenez ◽  
A. Sáenz-Galindo ◽  
...  
2010 ◽  
Vol 65 (7-8) ◽  
pp. 433-436
Author(s):  
Hui Xu ◽  
Huan Qu

Several 2,6-bis-(un)substituted phenoxymethylpyridines were synthesized and evaluated in vitro against Fusarium graminearum, Helminthosporium sorokinianum, Alternaria brassicae, Alternaria alternata, and Fusarium oxysporum f. sp. vasinfectum. Among all derivatives, compound 3 a exhibited a broad-spectrum antifungal activity against the five phytopathogenic fungi.


2012 ◽  
Vol 59 (2) ◽  
pp. 51-58 ◽  
Author(s):  
Alicja Saniewska ◽  
Anna Jarecka ◽  
Zbigniew Biały ◽  
Marian Jurzysta

Antifungal activity of total saponins originated from roots of <i>Medicago hybrida</i> (Pourret) Trautv. were evaluated <i>in vitro</i> against six pathogenic fungi and eight individual major saponin glycosides were tested against one of the most susceptible fungi. The total saponins showed fungitoxic effect at all investigated concentrations (0.01%, 0.05% and 0.1%) but their potency was different for individual fungi. The highest saponin concentration (0.1%) was the most effective and the inhibition of <i>Fusarium oxysporum</i> f. sp. <i>callistephi</i>, <i>Botrytis cinerea</i>, <i>Botrytis tulipae</i>, <i>Phoma narcissi</i>, <i>Fusarium oxysporum</i> f. sp. <i>narcissi</i> was 84.4%, 69.9%, 68.6%, 57.2%, 55.0%, respectively. While <i>Fusarium oxysporum</i> Schlecht., a pathogen of <i>Muscari armeniacum</i>, was inhibited by 9.5% only. Eight major saponin glycosides isolated from the total saponins of <i>M. hybrida</i> roots were tested against the mycelium growth of <i>Botrytis tulipae</i>. The mycelium growth of the pathogen was greatly inhibited by hederagenin 3-O-<i>β</i>-D-glucopyranoside and medicagenic acid 3-O-<i>β</i>-D-glucopyranoside. Medicagenic acid 3-O-<i>β</i>-D-glucuronopyranosyl-28-O-<i>β</i>-D-glucopyranoside and oleanolic acid 3-O-[<i>β</i>-D-glucuronopyranosyl(1→2)-<i>α</i>-L-galactopyranosyl]-28-O-<i>β</i>-D-glucopyranoside showed low fungitoxic activity. Medicagenic acid 3-O-a-D-glucopyranosyl- 28-O-β-D-glucopyranoside, hederagenin 3-O-[α-L- hamnopyranosyl(1→2)-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl]- 28-O-α-D-glucopyranoside and hederagenin 3-O-<i>β</i>-D-glucuronopyranosyl-28-O-<i>β</i>-D- lucopyranoside did not limit or only slightly inhibited growth of the tested pathogen. While 2<i>β</i>, 3<i>β</i>-dihydroxyolean-12 ene-23-al-28-oic acid 3-O-<i>β</i>-D-glucuronopyranosyl-28-O-<i>β</i>-D-glucopyranoside slightly stimulated mycelium growth of <i>B. tulipae</i>.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Laila Muñoz Castellanos ◽  
Nubia Amaya Olivas ◽  
Juan Ayala-Soto ◽  
Carmen Miriam De La O Contreras ◽  
Miriam Zermeño Ortega ◽  
...  

In this study, hydrodistillation was used to obtain essential oils (EOs) from pepper (Piper nigrum L.) and clove (Eugenia caryophyllata) and co-hydrodistillation (addition of fatty acid ethyl esters as extraction co-solvents) was used to obtain functional extracts (FEs). Antifungal activity of EOs and FEs was evaluated by determination of minimum inhibitory concentration (MIC) against Fusarium oxysporum and Aspergillus niger. The results showed that pepper (Piper nigrum) and clove (Eugenia caryophyllata) essential oils and their functional extracts are effective in vitro at concentrations from 400 to 500 ppm after 10 days of culturing. The essential oils and functional extracts were used on tomato fruit samples at three different concentrations: 350, 400, and 450 ppm5. Clove essential oil reduced the growth of Aspergillus niger from 50% to 70% and Fusarium oxysporum to 40%. The functional extracts (FEs) of clove and pepper, mixed with ethyl decanoate (FEs-C10), were the best combination for protecting the tomato fruit in vivo against both phytopathogenic fungi. Gas chromatography-mass spectrometry (GC-MS) was used to identify eugenol as the principal compound in clove oil and limonene, sabinene, and β-caryophyllene in pepper oil.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Hana Ighachane ◽  
Brahim Boualy ◽  
Mustapha Ait Ali ◽  
My. H. Sedra ◽  
Larbi El Firdoussi ◽  
...  

Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa), Fusarium oxysporum f. sp. canariensis (Foc), and Verticillium dahliae (Vd).


2021 ◽  
Vol 2(26) ◽  
pp. 191-199
Author(s):  
T.M. Sidorova ◽  
◽  
A.M. Asaturova ◽  
V.V. Allakhverdyan ◽  
◽  
...  

The antifungal activity of the Bacillus bacteria is based on their ability to produce metabolites. Therefore, when selecting a strain that produces an effective biofungicide, it is necessary to assess the metabolism of bacteria. The aim of this work is to isolate exo- and endometabolites of the promising B. velezensis BZR 336g and B. velezensis BZR 517 strains and assess their antifungal activity. Studies were carried out in 2020–2021. The object of the study is a liquid culture of the B. velezensis BZR 336g and B. velezensis BZR 517 strains. Methods of liquid extraction, ascending thin layer chromatography (TLC), bioautography with a test-culture of Fusarium oxysporum var. orthoceras and Alternaria sp. fungi were used to analyze metabolites. The ability of the strains to accumulate a complex of active metabolites showing antifungal effect from fungistatic to fungicidal action was revealed. On the bioautogram of exometabolites, we found two most pronounced zones (Rf 0.18 and 0.29) of Fusarium oxysporum var. orthoceras BZR P1 growth inhibition (fungicide). Zones with Rf 0.58 for B. velezensis BZR 336g and Rf 0.70 for B. velezensis BZR 517 correspond to the test fungus growth retardation (fungistatic). Significant suppression of Alternaria sp. BZR P8 growth was also observed in two zones (Rf 0.18 and 0.29). The use of surfactin, iturin A, fengycin (Sigma-Aldrich®) in the TLC analysis made it possible to detect similar lipopeptides in the composition of metabolite complexes produced by the studied bacteria. It should be noted that the studied strains differed both in their ability to produce metabolites of different structure (can be found when analyzing chromatograms under ultraviolet light) and in their effect on phytopathogenic fungi in vitro. This may indicate possible differences in the mechanism of antagonistic activity of bacteria against phytopathogenic fungi. Thus, B. velezensis BZR 336g and B. velezensis BZR 517 produce a significant set of antifungal metabolites and can be used as strains to produce effective biofungicides.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 295
Author(s):  
Marco Masi ◽  
Mariagioia Petraretti ◽  
Antonino De Natale ◽  
Antonino Pollio ◽  
Antonio Evidente

Fungi are among the biotic agents that can cause deterioration of building stones and cultural heritage. The most common methods used to control fungal spread and growth are based on chemical pesticides. However, the massive use of these synthetic chemicals produces heavy environmental pollution and risk to human and animal health. Furthermore, their use is time dependent and relies on the repetition of treatments, which increases the possibility of altering building stones and culture heritage through environmental contamination. One alternative is the use of natural products with high antifungal activity, which can result in reduced toxicity and deterioration of archeological remains. Recently, three fungal strains, namely Aspergillus niger, Alternaria alternata and Fusarium oxysporum, were isolated as damaging agents from the external tuff wall of the Roman remains “Villa of Poppea” in Oplontis, Naples, Italy. In this manuscript, three selected fungal metabolites, namely cyclopaldic acid, cavoxin and epi-epoformin, produced by fungi pathogenic for forest plants, were evaluated as potential antifungal compounds against the above fungi. Cavoxin and epi-epoformin showed antifungal activity against Asperigillus niger and Fusarium oxysporum, while cyclopaldic acid showed no activity when tested on the three fungi. The same antifungal activity was observed in vitro experiments on infected stones of the Neapolitan yellow tuff (NYT), a volcanic lithotype widely diffused in the archeological sites of Campania, Italy. This study represents a first step in the use of these two fungal metabolites to allow better preservation of artworks and to guarantee the conditions suitable for their conservation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1098
Author(s):  
César Chacón ◽  
Emanuel Bojórquez-Quintal ◽  
Goretty Caamal-Chan ◽  
Víctor M. Ruíz-Valdiviezo ◽  
Joaquín A. Montes-Molina ◽  
...  

The essential oils of plants of the genus Piper have secondary metabolites that have antimicrobial activity related to their chemical composition. The objective of our work was to determine the chemical composition and evaluate the antifungal activity of the aerial part essential oil of P. auritum obtained by hydrodistillation on Fusarium oxysporum and Fusarium equiseti isolated from Capsicum chinense. The antifungal activity was evaluated by direct contact and poisoned food tests, and the minimum inhibitory concentration (MIC50) and maximum radial growth inhibition (MGI) were determined. The identification of oil metabolites was carried out by direct analysis in real time mass spectrometry (DART-MS). By direct contact, the essential oil reached an inhibition of over 40% on Fusarium spp. The 8.4 mg/mL concentration showed the highest inhibition on F. oxysporum (40–60%) and F. equiseti (>50%). The MIC50 was 6 mg/mL for F. oxysporum FCHA-T7 and 9 mg/mL for F. oxysporum FCHJ-T6 and F. equiseti FCHE-T8. DART-MS chemical analysis of the essential oil showed [2M-H]− and [M-H]− adducts of high relative intensity that were mainly attributed to eugenol and thymol/p-cimen-8-ol. The findings found in this study show a fungistatic effect of the essential oil of P. auritum on Fusarium spp.


Sign in / Sign up

Export Citation Format

Share Document