Interfacial and mechanical properties of continuous ramie fiber reinforced biocomposites fabricated by in-situ impregnated 3D printing

2021 ◽  
Vol 170 ◽  
pp. 113760
Author(s):  
Ping Cheng ◽  
Kui Wang ◽  
Xuanzhen Chen ◽  
Jin Wang ◽  
Yong Peng ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3463
Author(s):  
Xin Wang ◽  
Xiaoyong Tian ◽  
Lixian Yin ◽  
Dichen Li

A novel 3D printing route to fabricate continuous fiber reinforced metal matrix composite (CFRMMC) is proposed in this paper. It is distinguished from the 3D printing process of polymer matrix composite that utilizes the pressure inside the nozzle to combine the matrix with the fiber. This process combines the metallic matrix with the continuous fiber by utilizing the wetting and wicking performances of raw materials to form the compact internal structures and proper fiber-matrix interfaces. CF/Pb50Sn50 composites were printed with the Pb50Sn50 alloy wire and modified continuous carbon fiber. The mechanical properties of the composite specimens were studied, and the ultimate tensile strength reached 236.7 MPa, which was 7.1 times that of Pb50Sn50 alloy. The fracture and interfacial microstructure were investigated and analyzed. The relationships between mechanical properties and interfacial reactions were discussed. With the optimized process parameters, several composites parts were printed to demonstrate the advantages of low cost, short fabrication period and flexibility in fabrication of complex structures.


2020 ◽  
pp. 089270572094537
Author(s):  
Van-Tho Hoang ◽  
Bo-Seong Kwon ◽  
Jung-Won Sung ◽  
Hyeon-Seok Choe ◽  
Se-Woon Oh ◽  
...  

Promising carbon fiber-reinforced thermoplastic (CF/polyetherketoneketone (PEKK)) composites were fabricated by the state-of-the-art technology known as “Automated Fiber Placement.” The mechanical properties of CF/PEKK were evaluated for four different postprocessing methods: in situ consolidation, annealing, vacuum bag only (VBO), and hot press (HP). The evaluation was performed by narrowing down the relevant processing parameters (temperature and layup speed). Furthermore, the void content and crystallinity of CF/PEKK were measured to determine the effect of these postprocessing processes. The HP process resulted in the best quality with the highest interlaminar shear strength, highest crystallinity degree, and lowest void content. The second most effective method was VBO, and annealing also realized an improvement compared with in situ consolidation. The correlation between the postprocessing method and the void content and crystallinity degree was also discussed.


2008 ◽  
Vol 41-42 ◽  
pp. 313-316 ◽  
Author(s):  
Li Ping He ◽  
Yong Tian ◽  
Lu Lin Wang

Natural fiber reinforced polypropylene composites (NF/PP) have attracted a lot of attention because of their light weight, good mechanical properties, recyclable and environmental friendly features. This work has successfully fabricated ramie fiber reinforced polypropylene composites (RF/PP) with a hybrid method of melt-blending and injection molding. Different RF/PP eco-materials have been fabricated by varying the fiber length, fiber content and way of fiber pre-treatment. This paper studied the mechanical properties of the fabricated RF/PP composites in depth by investigating the mechanical behaviors of RF/PP and microstructures of the ruptured surfaces. The results show that the increases of fiber length and fiber content can improve the tensile strength, flexural strength and compression strength apparently, but result in negative influences on the impact strength and elongation behaviors of RF/PP composites. The optimal addition amount of ramie fiber is around 20 wt%. The pre-treatment of ramie fiber in 10%~15% NaOH is good to the mechanical properties of RF/PP. The fiber length can be varied in the range of 3-8 mm. It is expected that the fabricated RF/PP composites can be applied to automobile industry as environmental friendly eco-materials.


2020 ◽  
Vol 12 (29) ◽  
pp. 33267-33275 ◽  
Author(s):  
Wangqu Liu ◽  
Ozan Erol ◽  
David H. Gracias

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4520
Author(s):  
Salman Pervaiz ◽  
Taimur Ali Qureshi ◽  
Ghanim Kashwani ◽  
Sathish Kannan

Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military vehicles, shelters, war fighting safety equipment, fighter aircrafts, naval ships, and submarine structures. Techniques to fabricate composite materials, degrade the weight-to-strength ratio and the tensile strength of the components, and they can play a critical role towards the service life of the components. Fused deposition modeling (FDM) is a technique for 3D printing that allows layered fabrication of parts using thermoplastic composites. Complex shape and geometry with enhanced mechanical properties can be obtained using this technique. This paper highlights the limitations in the development of FRPs and challenges associated with their mechanical properties. The future prospects of carbon fiber (CF) and polymeric matrixes are also mentioned in this study. The study also highlights different areas requiring further investigation in FDM-assisted 3D printing. The available literature on FRP composites is focused only on describing the properties of the product and the potential applications for it. It has been observed that scientific knowledge has gaps when it comes to predicting the performance of FRP composite parts fabricated under 3D printing (FDM) techniques. The mechanical properties of 3D-printed FRPs were studied so that a correlation between the 3D printing method could be established. This review paper will be helpful for researchers, scientists, manufacturers, etc., working in the area of FDM-assisted 3D printing of FRPs.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4083
Author(s):  
Liping He ◽  
Fan Xia ◽  
Yuan Wang ◽  
Jianmin Yuan ◽  
Dachuan Chen ◽  
...  

The mechanical and dynamic mechanical properties, interface adhesion and microstructures of the amino silicone oil emulsion (ASO) modified short ramie fiber reinforced polypropylene composites (RFPCs) with different fiber fractions were investigated. The RFPCs were made through a combined process of extrusion and injection molding. Mechanical property tests of the RFPCs revealed enhancements in tensile and flexural strengths with increase of the fiber fraction due to the high stiffness of the fiber filler and a better interfacial bonding from ASO treatment. The dynamic mechanical analysis (DMA) results indicated that fiber incorporation plays an important role in DMA parameters (storage modulus, loss modulus, and damping ratio) at Tg by forming an improved interfacial adhesion and providing more effective stress transfer rate and energy dissipation between matrix and fiber. The phase behavior analysis suggests all the RFPCs are a kind of heterogeneity system based on the Cole-Cole plot analysis.


Sign in / Sign up

Export Citation Format

Share Document