Organosolv fractionation of eucalyptus: Economics of cellulosic ethanol and chemicals versus lignin valorization to phenols and polyols

2021 ◽  
Vol 173 ◽  
pp. 114097
Author(s):  
Larissa Braga Dornelles ◽  
Rubens Maciel Filho ◽  
Adriano Pinto Mariano
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhi-Hua Liu ◽  
Naijia Hao ◽  
Yun-Yan Wang ◽  
Chang Dou ◽  
Furong Lin ◽  
...  

AbstractBiological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing ‘plug-in processes of lignin’ with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.


Author(s):  
Carlos Eduardo de Araújo Padilha ◽  
Cleitiane da Costa Nogueira ◽  
Bárbara Ribeiro Alves Alencar ◽  
Íthalo Barbosa Silva de Abreu ◽  
Emmanuel Damilano Dutra ◽  
...  

2020 ◽  
Vol 299 ◽  
pp. 122559 ◽  
Author(s):  
Nawaporn Khwanjaisakun ◽  
Suksun Amornraksa ◽  
Lida Simasatitkul ◽  
Pongtorn Charoensuppanimit ◽  
Suttichai Assabumrungrat

Author(s):  
Kara G. Cafferty ◽  
David J. Muth ◽  
Jacob J. Jacobson ◽  
Kenneth M. Bryden

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package Powersim™. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short-rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.


Sign in / Sign up

Export Citation Format

Share Document