Investigating the effect of process parameters on the mechanical properties and temperature distribution in fiber laser welding of AISI304 and AISI 420 sheet using response surface methodology

2020 ◽  
Vol 111 ◽  
pp. 103478
Author(s):  
Amirhosein Mosavi ◽  
Ahmad Soleimani ◽  
Alireza Karimi ◽  
Mohammad Akbari ◽  
Arash Karimipour ◽  
...  
2018 ◽  
Vol 53 (11) ◽  
pp. 1459-1473 ◽  
Author(s):  
Shiva Dayal Rao B ◽  
Abhijeet Sethi ◽  
Alok Kumar Das

In the present investigation, a continuous wave fiber laser with maximum power of 400 W was used to cut a glass fiber reinforced plastic sheet of 4.56 mm thickness using Nitrogen as assisting gas. The influence processing parameters such as laser irradiance, gas pressure, and cutting speed on the cut surface quality were investigated by using response surface methodology. The different responses of laser cut surface such as upper kerf width, taper percentage along the cut depth, and heat-affected zone on the top surface were measured to analyze the influence of input process parameters on the responses. A statistical analysis on the obtained results was conducted and found that the optimum values of different input process parameters were laser irradiance: 8.28 × 105 watt/cm2, cutting speed: 600 mm/min and assisting gas pressure: 7.84 bar. The corresponding values of responses were upper kerf width: 177.4 µm, taper 0.73%, and heat-affected zone on top surface: 109.23 µm. The confirmation experiments were conducted with the obtained optimum parameter setting and observed that the predicted values and experimental values for upper kerf width, taper percentage and top surface heat-affected zone were within the error limits of 2.52%, 1.84%, and 0.45%, respectively. Furthermore, damages like loose fibers, interlayer fractures, evaporation of matrix material and fiber breakages were observed.


2020 ◽  
Vol 65 (1) ◽  
pp. 57-65
Author(s):  
Raquel Alvim de Figueiredo Mansur ◽  
Vagner Braga ◽  
Vinicius Machado Mansur ◽  
Daolun Chen ◽  
Milton Sergio Fernandes de Lima

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7498
Author(s):  
Abdel-Monem El-Batahgy ◽  
Olga Klimova-Korsmik ◽  
Aleksandr Akhmetov ◽  
Gleb Turichin

The results disclosed that both the microstructure and mechanical properties of AA7075-T6 laser welds are considerably influenced by the heat input. In comparison with high heat input (arc welding), a smaller weld fusion zone with a finer dendrite arm spacing, limited loss of alloying elements, less intergranular segregation, and reduced residual tensile stress was obtained using low heat input. This resulted in a lower tendency of porosity and hot cracking, which improved the welded metal’s soundness. Subsequently, higher hardness as well as higher tensile strength for the welded joint was obtained with lower heat input. A welded joint with better mechanical properties and less mechanical discrepancy is important for better productivity. The implemented high-power fiber laser has enabled the production of a low heat input welded joint using a high welding speed, which is of considerable importance for minimizing not only the fusion zone size but also the deterioration of its properties. In other words, high-power fiber laser welding is a viable solution for recovering the mechanical properties of the high-strength AA 7075-T6 welds. These results are encouraging to build upon for further improvement of the mechanical properties to be comparable with the base metal.


Sign in / Sign up

Export Citation Format

Share Document