Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material

2013 ◽  
Vol 35 ◽  
pp. 15-24 ◽  
Author(s):  
Robert D. Schmidt ◽  
Eldon D. Case ◽  
Gloria J. Lehr ◽  
Donald T. Morelli
2021 ◽  
Vol 2103 (1) ◽  
pp. 012075
Author(s):  
AA Dmitrievskiy ◽  
DG Zhigacheva ◽  
VM Vasyukov ◽  
PN Ovchinnikov

Abstract In this work, the phase composition (relative fractions of monoclinic m-ZrO2, tetragonal t-ZrO2, and cubic c-ZrO2 phases) and mechanical properties (hardness, fracture toughness, compressive strength) of alumina toughened zirconia (ATZ) ceramics, with an addition of silica were investigated. Calcium oxide was used as a stabilizer for the zirconia tetragonal phase. It was shown that CaO-ATZ+SiO2 ceramics demonstrate increased resistance to low-temperature degradation. The plasticity signs at room temperature were found due to the SiO2 addition to CaO-ATZ ceramics. A yield plateau appears in the uniaxial compression diagram at 5 mol. % SiO2 concentration. It is hypothesized that discovered plasticity is due to the increased t→m transformability.


2012 ◽  
Vol 443-444 ◽  
pp. 583-586
Author(s):  
Ya Juan Sun ◽  
Ri Ga Wu ◽  
Hong Jing Wang

The mechanical properties of a new Zr-based bulk metallic glass at low temperatures were investigated. The results indicate that the fracture strength increases significantly (4.9%) and the global plasticity increases somewhat when testing temperature is lowered to 123K. The stress-strain curve of the sample deformed exhibits more serrations and smaller stress drop due to formation of more shear bands at low temperature than at room temperature.


2017 ◽  
Vol 265 ◽  
pp. 456-462 ◽  
Author(s):  
P.L. Reznik ◽  
Mikhail Lobanov

Studies have been conducted as to the effect of Cu, Mn, Fe concentration changes in Al-Cu-Mn-Fe-Ti alloy, the conditions of thermal and deformational treatment of ingots and extruded rods 40 mm in diameter on the microstructure, phase composition and mechanical properties. It has been determined that changing Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy to Al-6.5Cu-0.7Mn-0.11Fe-0.15Ti causes an increase in the strength characteristics of extruded rods at the room temperature both after molding and in tempered and aged conditions, irrespective of the conditions of thermal treatment of the initial ingot (low-temperature annealing 420 °С for 2 h, or high-temperature annealing at 530 °С for 12 h). Increasing the extruding temperature from 330 to 480 °С, along with increasing Cu, Mn and decreasing Fe in the alloy Al-Cu-Mn-Ti, is accompanied by the increased level of ultimate strength in a quenched condition by 25% to 410 MPa, irrespective of the annealing conditions of the original ingot. An opportunity to apply the Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy with low-temperature annealing at 420 °С for 2 h and the molding temperature of 330 °С has been found to produce rods where, in the condition of full thermal treatment (tempering at 535 °С + aging at 200 °С for 8 hours), a structure is formed that ensures satisfactory characteristics of high temperature strength by resisting to fracture for more than 100 hours at 300 °С and 70 MPa.


2014 ◽  
Vol 783-786 ◽  
pp. 431-436 ◽  
Author(s):  
Xiao Ping Niu ◽  
Tim Skszek ◽  
Mark Fabischek ◽  
Alex Zak

Cosma R&D investigated a low temperature warm forming process by which a magnesium ZEK 100 door inner part with a single-stage draw depth of 144 mm was successfully formed. The warm forming process is comprised of three steps: 1) heating pre-lubricated blanks in an oven at temperatures ranging from 215°C to 260 °C, 2) robotic transfer of the heated blank to a mechanical stamping press, 3) forming of the panel in room temperature stamping die at speed of about 160 mm/s. The effect of process parameters on the formability of the part, as well as, the post-forming properties including the mechanical properties, microstructure evolution and deformation thinning are also presented. The result indicates that Magnesium ZEK 100 exhibits superior low temperature warm formability over Magnesium AZ31B, and the developed warm forming process is promising and potential for volume production of magnesium automotive parts.


2007 ◽  
Vol 539-543 ◽  
pp. 2100-2105
Author(s):  
Takeshi Fukami ◽  
A. Nanbu ◽  
M. Fukatani ◽  
Daisuke Okai ◽  
Y. Akeno ◽  
...  

In order to examine mechanical properties of a metallic glass Zr50Cu40Al10 in low temperature below room temperature, the temperature T dependence of mechanical resonance of ultrasonic wave are measured. The mechanical resonance frequency in an as-quenched sample shows an abrupt increase at 200K for longitudinal wave and 160 K for transverse wave with decreasing T. After this abrupt increase, the sound propagation cannot be detected below these temperatures but the wave propagation is restored with increasing T and there is an abrupt decrease at 260K for the both wave modes. The similar hysteresis is observed in temperature dependence of the electrical resistivity. These suggest a kind of structure instability of Zr50Cu40Al10 in low temperature region.


2012 ◽  
Vol 468-471 ◽  
pp. 1053-1057
Author(s):  
Yun Feng Yang ◽  
Guo Sheng Hu ◽  
Xing Lin Ren

By the in situ compatibilization, PP/POE blends were prepared with dicumyl peroxide (DCP) as initiator, Trimethylolpropane triacrylate (TMPTA) as co-during systems and the metallocene polyolef in elastomers ploy (ethylene-1-octene) (POE) as toughening rubber. The effects of additive amount for TMPTA、POE on the mechanical properties were studied. The results showed that the maximum value of the room-temperature and low-temperature impact strength for the composite was reached to 52.03KJ/m2 and 37.29KJ/m2, and the elongationfor was reached to 482.74%.


2017 ◽  
Vol 62 (2) ◽  
pp. 643-651 ◽  
Author(s):  
A. Morri ◽  
L. Ceschini ◽  
M. Pellizzari ◽  
C. Menapace ◽  
F. Vettore ◽  
...  

AbstractThe effect of austempering parameters on the microstructure and mechanical properties of 27MnCrB5-2 steel has been investigated by means of: dilatometric, microstructural and fractographic analyses; tensile and Charpy V-notch (CVN) impact tests at room temperature and a low temperature.Microstructural analyses showed that upper bainite developed at a higher austempering temperature, while a mixed bainitic-martensitic microstructure formed at lower temperatures, with a different amount of bainite and martensite and a different size of bainite sheaf depending on the temperature. Tensile tests highlighted superior yield and tensile strengths (≈30%) for the mixed microstructure, with respect to both fully bainitic and Q&T microstructures, with only a low reduction in elongation to failure (≈10%). Impact tests confirmed that mixed microstructures have higher impact properties, at both room temperature and a low temperature.


2013 ◽  
Vol 310 ◽  
pp. 124-128 ◽  
Author(s):  
Xiao Jun Zhang ◽  
Xin Long Chang ◽  
Shi Ying Zhang ◽  
Jie Tang Zhu

In order to investigate low temperature mechanical characteristics of HTPB (hydroxy-terminated polybutadiene binder) propellant, uniaxial tensile tests at both the low temperature and room temperature after short storage at low temperature were conducted and SEM (scanning electron microscopy) was used to observe fracture surfaces. The mechanical properties and stress-strain curves were obtained. The experimental results show that matrix tearing and particle brittle fracture occur in low temperature tensile test, but only particle/matrix interface de-wetting in room temperature tensile test. Low temperature stress-strain curves of propellant appear obviously yield region, and the yield degree is involved to the low temperature value. The low temperature mechanical properties such as maximum tensile stress, elastic modulus and strain at maximum stress against temperature are different from room temperature mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document