Experimental Study on Low Temperature Mechanical Properties of HTPB Propellant

2013 ◽  
Vol 310 ◽  
pp. 124-128 ◽  
Author(s):  
Xiao Jun Zhang ◽  
Xin Long Chang ◽  
Shi Ying Zhang ◽  
Jie Tang Zhu

In order to investigate low temperature mechanical characteristics of HTPB (hydroxy-terminated polybutadiene binder) propellant, uniaxial tensile tests at both the low temperature and room temperature after short storage at low temperature were conducted and SEM (scanning electron microscopy) was used to observe fracture surfaces. The mechanical properties and stress-strain curves were obtained. The experimental results show that matrix tearing and particle brittle fracture occur in low temperature tensile test, but only particle/matrix interface de-wetting in room temperature tensile test. Low temperature stress-strain curves of propellant appear obviously yield region, and the yield degree is involved to the low temperature value. The low temperature mechanical properties such as maximum tensile stress, elastic modulus and strain at maximum stress against temperature are different from room temperature mechanical properties.

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Teuku Rihayat ◽  
Noor Mustafa ◽  
Saari Mustapha

This study investigates the effect of filler content on mechanical properties for polypropylene. There are  synthesis clay and  un-synthesis clay  used  as  filler  content. Different ratio  of  clay  was  d  in polypropylene to study which ratio have a better mechanical properties. The tensile test was carried out using INSTRON5565 and the maximum stress, strain, and modulus of elasticity observed. Results of the study showed that polypropylene/clay nanocomposite has a higher maximum stress compare to pure polypropylene and un-synthesis clay have a lowest. Besides that modulus of elasticity of specimen calculated and finds that it increased with increment filler content and strain did not affect by filler. The conclusion is synthesis clay filled into polypropylene will having a better material.Keywords: Nanocomposite, polypropylene, synthesis clay.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4224
Author(s):  
Che-Yu Lin ◽  
Jiunn-Horng Kang

Mechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress–strain curve measured using uniaxial tensile test until failure. The typical stress–strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve. The associated mechanical properties can be obtained by analyzing this bilinear stress–strain curve. In this article, a computer programming code for analyzing the bilinear stress–strain curve of compact bone for quantifying the associated mechanical properties is provided, such that the readers can use this computer code to perform the analysis directly. In addition to being applied to compact bone, the information provided by this article can also be applied to quantify the mechanical properties of any material having a bilinear stress–strain curve, such as a whole bone, some metals and biomaterials. The information provided by this article can be applied by tissue engineers, such that they can have a reference to properly design the mechanical properties of scaffolds for bone tissue engineering. The information can also be applied by researchers in biomechanics and orthopedics to compare the mechanical properties of bones in different physiological or pathological conditions.


2017 ◽  
Vol 62 (2) ◽  
pp. 643-651 ◽  
Author(s):  
A. Morri ◽  
L. Ceschini ◽  
M. Pellizzari ◽  
C. Menapace ◽  
F. Vettore ◽  
...  

AbstractThe effect of austempering parameters on the microstructure and mechanical properties of 27MnCrB5-2 steel has been investigated by means of: dilatometric, microstructural and fractographic analyses; tensile and Charpy V-notch (CVN) impact tests at room temperature and a low temperature.Microstructural analyses showed that upper bainite developed at a higher austempering temperature, while a mixed bainitic-martensitic microstructure formed at lower temperatures, with a different amount of bainite and martensite and a different size of bainite sheaf depending on the temperature. Tensile tests highlighted superior yield and tensile strengths (≈30%) for the mixed microstructure, with respect to both fully bainitic and Q&T microstructures, with only a low reduction in elongation to failure (≈10%). Impact tests confirmed that mixed microstructures have higher impact properties, at both room temperature and a low temperature.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4339
Author(s):  
Guanqiang Wang ◽  
Mingsong Chen ◽  
Yongcheng Lin ◽  
Yumin Lou ◽  
Hongbin Li ◽  
...  

This study takes large size samples after hot-upsetting as research objects and aims to investigate the optimization double-stage annealing parameters for improving the mechanical properties of hot-upsetting samples. The double-stage annealing treatments and uniaxial tensile tests for hot-upsetting GH4169 superalloy were finished firstly. Then, the fracture mode was also studied. The results show that the strength of hot-upsetting GH4169 superalloy can be improved by the double-stage annealing treatment, but the effect of annealing parameters on the elongation of GH4169 alloy at high temperature and room temperature is not significant. The fracture mode of annealed samples at high-temperature and room-temperature tensile tests is a mixture of shear fracture and quasi-cleavage fracture while that of hot-upsetting sample is a shear fracture. The macroscopic expressions for the two fracture modes belong to ductile fracture. Moreover, it is also found that the improvement of strength by the double-stage annealing treatment is greater than the single-stage annealing treatment. This is because the homogeneity of grains plays an important role in the improvement of strength for GH4169 superalloy when the average grain size is similar. Based on a comprehensive consideration, the optimal annealing route is determined as 900 °C × 9–12 h(water cooling) + 980 °C × 60 min(water cooling).


10.30811/jstr ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Teuku Rihayat ◽  
Noor Mustafa ◽  
Saari Mustapha

This study investigates the effect of filler content on mechanical properties for polypropylene. There are  synthesis clay and  un-synthesis clay  used  as  filler  content. Different ratio  of  clay  was  d  in polypropylene to study which ratio have a better mechanical properties. The tensile test was carried out using INSTRON5565 and the maximum stress, strain, and modulus of elasticity observed. Results of the study showed that polypropylene/clay nanocomposite has a higher maximum stress compare to pure polypropylene and un-synthesis clay have a lowest. Besides that modulus of elasticity of specimen calculated and finds that it increased with increment filler content and strain did not affect by filler. The conclusion is synthesis clay filled into polypropylene will having a better material.Keywords: Nanocomposite, polypropylene, synthesis clay.


2014 ◽  
Vol 511-512 ◽  
pp. 32-36
Author(s):  
Nacer E. Bacha ◽  
Slimane Bouterfaya

The uniaxial tensile tests are generally used to measure the yield stress and/or tensile stresses. The majority of the results, resulting from this method and deferred in the literature on the mechanical properties of amorphous materials, were obtained in the ribbons form generally produced by melt spinning. This limitation in the shape of the specimens for tensile tests was inherent in the manufacturing techniques of the amorphous materials which required cooling rates of about 106°C/s. The fabrication of amorphous coatings by plasma spraying, in tubular form, should improve rigidity of the specimens, increase their size and especially get a more reliable means to the amorphous coatings under the tensile test. Amorphous coatings of NiCrBSi alloys are produced by thermal plasma spraying. The thickness of the resulting amorphous deposit may be up to 500 μm. The uniaxial tensile tests were carried on Instron machine at room temperature. Microstructural studies are investigated by means of X-ray diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The test methodology used in this study shows that it is possible to obtain a comprehensive assessment of the mechanical properties of the amorphous coatings deposited by thermal plasma in tubular form. Plasma sprayed coatings in tubular form, under the uniaxial tensile test in the amorphous state, crystallized and nanocrystallized, fracture without bursting compared to samples in the form of amorphous ribbon.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastián Tognana ◽  
Susana Montecinos ◽  
Rosana Gastien ◽  
Walter Salgueiro

Abstract Commonly used 3D printed samples are partially infilled to reduce time and cost of printing, with mechanical properties dependent on the infill. In this work, the influence of the percentage and pattern of infill in PLA printed samples on the elastic modulus and characteristic stresses was analyzed. The elastic modulus, E, and characteristic stresses (σ 0.2, σ 4 and the maximum tensile stress) were determined for each sample using impulse excitation technique, IET, and uniaxial tensile tests. An apparent density was calculated for each pattern and infill percentage, and the mechanical parameters were studied as a function of such density. The results of IET obtained in different modes of vibration were analyzed and an apparent value of E was calculated. FEM simulations were carried out and the results were compared with the experimental ones. The mechanical properties for different infill percentages and infill patterns were studied by comparing the specific values of E and the stresses. Samples with higher infill percentages exhibit the best specific values of maximum stress and E, but the sample with 20% infill has the highest specific yield stress and a good value of the specific E from flexural vibrations.


2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


Sign in / Sign up

Export Citation Format

Share Document