Influence of alloying elements and the state of order on the formation of antiphase boundaries in B2 phases

2022 ◽  
Vol 141 ◽  
pp. 107434
Author(s):  
Daniel Vidal ◽  
Guy Hillel ◽  
Itzhak Edry ◽  
Malki Pinkas ◽  
David Fuks ◽  
...  
Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
N.-H. Cho ◽  
S. McKernan ◽  
C.B. Carter ◽  
K. Wagner

Interest has recently increased in the possibility of growing III-V compounds epitactically on non-polar substrates to produce device quality material. Antiphase boundaries (APBs) may then develop in the GaAs epilayer because it has sphalerite structure (face-centered cubic with a two-atom basis). This planar defect may then influence the electrical behavior of the GaAs epilayer. The orientation of APBs and their propagation into GaAs epilayers have been investigated experimentally using both flat-on and cross-section transmission electron microscope techniques. APBs parallel to (110) plane have been viewed at the atomic resolution and compared to simulated images.Antiphase boundaries were observed in GaAs epilayers grown on (001) Ge substrates. In the image shown in Fig.1, which was obtained from a flat-on sample, the (110) APB planes can be seen end-on; the faceted APB is visible because of the stacking fault-like fringes arising from a lattice translation at this interface.


Author(s):  
T. S. Kuan

Recent electron diffraction studies have found ordered phases in AlxGa1-xAs, GaAsxSb1-x, and InxGa1-xAs alloy systems, and these ordered phases are likely to be found in many other III-V ternary alloys as well. The presence of ordered phases in these alloys was detected in the diffraction patterns through the appearance of superstructure reflections between the Bragg peaks (Fig. 1). The ordered phase observed in the AlxGa1-xAs and InxGa1-xAs systems is of the CuAu-I type, whereas in GaAsxSb1-x this phase and a chalcopyrite type ordered phase can be present simultaneously. The degree of order in these alloys is strongly dependent on the growth conditions, and during the growth of these alloys, high surface mobility of the depositing species is essential for the onset of ordering. Thus, the growth on atomically flat (110) surfaces usually produces much stronger ordering than the growth on (100) surfaces. The degree of order is also affected by the presence of antiphase boundaries (APBs) in the ordered phase. As shown in Fig. 2(a), a perfectly ordered In0.5Ga0.5As structure grown along the <110> direction consists of alternating InAs and GaAs monolayers, but due to local growth fluctuations, two types of APBs can occur: one involves two consecutive InAs monolayers and the other involves two consecutive GaAs monolayers.


1980 ◽  
Vol 11 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Jack Damico ◽  
John W. Oller

Two methods of identifying language disordered children are examined. Traditional approaches require attention to relatively superficial morphological and surface syntactic criteria, such as, noun-verb agreement, tense marking, pluralization. More recently, however, language testers and others have turned to pragmatic criteria focussing on deeper aspects of meaning and communicative effectiveness, such as, general fluency, topic maintenance, specificity of referring terms. In this study, 54 regular K-5 teachers in two Albuquerque schools serving 1212 children were assigned on a roughly matched basis to one of two groups. Group S received in-service training using traditional surface criteria for referrals, while Group P received similar in-service training with pragmatic criteria. All referrals from both groups were reevaluated by a panel of judges following the state determined procedures for assignment to remedial programs. Teachers who were taught to use pragmatic criteria in identifying language disordered children identified significantly more children and were more often correct in their identification than teachers taught to use syntactic criteria. Both groups identified significantly fewer children as the grade level increased.


Sign in / Sign up

Export Citation Format

Share Document