scholarly journals Precise Deposition of Polydopamine on Cancer Cell Membrane as Artificial Receptor for Targeted Drug Delivery

iScience ◽  
2020 ◽  
Vol 23 (12) ◽  
pp. 101750
Author(s):  
Hoda Safari Yazd ◽  
Yu Yang ◽  
Long Li ◽  
Lu Yang ◽  
Xiaowei Li ◽  
...  
2017 ◽  
Vol 53 (81) ◽  
pp. 11114-11117 ◽  
Author(s):  
Shan Peng ◽  
Yahua Wang ◽  
Na Li ◽  
Chong Li

Biting deep into the target cell membrane: nanoparticles targeting the transmembrane domain by trifluoroethanol-assisted epitope imprinting.


Nanophotonics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 611-622
Author(s):  
Xiaole Liu ◽  
Jie Yuan ◽  
Dong Wu ◽  
Xiaobin Zou ◽  
Qing Zheng ◽  
...  

AbstractTargeted drug delivery and real-time detection both play an important role for studying the specificity of a single cancer cell and the development of anticancer drugs. However, a method that simultaneously enables safe and efficient targeted drug delivery and noninvasive, free-label cell detection is highly desirable but challenging. Here, we report an all-optical method that combines fiber optical tweezers with laser Raman microspectroscopy, which can achieve targeted drug delivery to a single cancer cell using optical manipulation in vitro quickly and accurately by a tapered fiber probe, and simultaneously record the corresponding active characteristics of the targeted cancer cell under the contact of delivered drug through a Raman spectrometer. Using the method, drug delivery and release can be flexibly controlled by turning on/off the trapping laser beam propagating in the fiber, which can avoid the complex systems and is highly autonomous and controllable. Moreover, the detection of cell activity does not require any dye calibration and processing, and it is noninvasive. In addition, for a single suspension cell, optical trapping of the cell using another fiber tip can overcome the low efficiency of targeted drug delivery and the poor stability of the Raman spectrum caused by Brownian motion of the cell. This all-optical method provides a promising approach to conduct pharmacologic studies with the reaction of cancer cell and drugs at the level of a single cell.


Small ◽  
2016 ◽  
Vol 12 (30) ◽  
pp. 4056-4062 ◽  
Author(s):  
Changyong Gao ◽  
Zhihua Lin ◽  
Beatriz Jurado-Sánchez ◽  
Xiankun Lin ◽  
Zhiguang Wu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Simon Merminod ◽  
John R. Edison ◽  
Huang Fang ◽  
Michael F. Hagan ◽  
W. Benjamin Rogers

Targeted drug delivery relies on two physical processes: the selective binding of a therapeutic particle to receptors on a specific cell membrane, followed by transport of the particle across the...


Sign in / Sign up

Export Citation Format

Share Document