scholarly journals Multimodal neural probes for combined optogenetics and electrophysiology

iScience ◽  
2021 ◽  
pp. 103612
Author(s):  
Huihui Tian ◽  
Ke Xu ◽  
Liang Zou ◽  
Ying Fang
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2605
Author(s):  
Ashley Novais ◽  
Carlos Calaza ◽  
José Fernandes ◽  
Helder Fonseca ◽  
Patricia Monteiro ◽  
...  

Multisite neural probes are a fundamental tool to study brain function. Hybrid silicon/polymer neural probes combine rigid silicon and flexible polymer parts into one single device and allow, for example, the precise integration of complex probe geometries, such as multishank designs, with flexible biocompatible cabling. Despite these advantages and benefiting from highly reproducible fabrication methods on both silicon and polymer substrates, they have not been widely available. This paper presents the development, fabrication, characterization, and in vivo electrophysiological assessment of a hybrid multisite multishank silicon probe with a monolithically integrated polyimide flexible interconnect cable. The fabrication process was optimized at wafer level, and several neural probes with 64 gold electrode sites equally distributed along 8 shanks with an integrated 8 µm thick highly flexible polyimide interconnect cable were produced. The monolithic integration of the polyimide cable in the same fabrication process removed the necessity of the postfabrication bonding of the cable to the probe. This is the highest electrode site density and thinnest flexible cable ever reported for a hybrid silicon/polymer probe. Additionally, to avoid the time-consuming bonding of the probe to definitive packaging, the flexible cable was designed to terminate in a connector pad that can mate with commercial zero-insertion force (ZIF) connectors for electronics interfacing. This allows great experimental flexibility because interchangeable packaging can be used according to experimental demands. High-density distributed in vivo electrophysiological recordings were obtained from the hybrid neural probes with low intrinsic noise and high signal-to-noise ratio (SNR).


2021 ◽  
pp. 1-1
Author(s):  
Pyungwoo Yeon ◽  
Sreejith Kochupurackal Rajan ◽  
Jessica Falcone ◽  
Joe L. Gonzalez ◽  
Gary S. May ◽  
...  

2016 ◽  
Vol 13 (4) ◽  
pp. 046018 ◽  
Author(s):  
Frédéric Michon ◽  
Arno Aarts ◽  
Tobias Holzhammer ◽  
Patrick Ruther ◽  
Gustaaf Borghs ◽  
...  

Author(s):  
Gabriella Shull ◽  
Jay Jia Hu ◽  
Justin Buschnyj ◽  
Henry Koon ◽  
Julianna Abel ◽  
...  

The ability to sense neural activity using electrodes has allowed scientists to use this information to temporarily restore movement in paralyzed individuals using brain-computer interfaces (BCI). However, current electrodes do not provide chronic recording of the brain due to the inflammatory response of the immune system caused by the large (∼ 20–80 μm) size of the shanks, and the mechanical mismatch of the shanks relative to the brain. Electrode designs are evolving to use small (< 15 μm) flexible neural probes to minimize inflammatory responses and enable chronic use. However, their flexibility limits the scalability — it is challenging to assemble 3D arrays of such electrodes, to insert the arrays of flexible neural probes into the brain without buckling, and to uniformly distribute them into large areas of the brain. Thus, we created Shape Memory Alloy (SMA) actuated Woven Neural Probes (WNPs). A linear array of 32 flexible insulated microwires were interwoven with SMA wires resulting in an ordered array of parallel electrodes. SMA WNPs were shaped to an initial constricted profile for reliable insertion into a tissue phantom. Following insertion, the SMA wires were used as actuators to unravel the constricted WNP to distribute electrodes across large volumes. We demonstrated that the WNPs could be inserted into the brain without buckling and record neural activity. In separate experiments, we showed that the SMA could mechanically distribute the WNPs via thermally induced actuation. This work thus highlights the potential of actuatable WNPs to be used as a platform for neural recording.


2021 ◽  
Author(s):  
Clement Cointe ◽  
Adrian Laborde ◽  
Lionel G Nowak ◽  
David Bourrier ◽  
Christian Bergaud ◽  
...  

Flexible deep brain probes have been the focus of many research works and aims at achieving better compliance with the surrounding brain tissue while maintaining minimal rejection. Strategies have been explored to find the best way to implant a flexible probe in the brain, while maintaining its flexibility once positioned in the cortex. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultra-thin and flexible penetrating neural probe consisting of a silk-parylene bilayer. The biodegradable silk layer provides a temporary and programmable stiffener to ensure ease of insertion of the ultrathin parylene-based flexible devices. The innovative and yet robust batch fabrication technology allows complete design freedom of the neural probe in terms of materials, size, shape and thickness. These results provide a novel technological solution for implanting ultra-flexible and ultrathin devices, which possesses great potential for brain research.


2007 ◽  
Vol 4 (4) ◽  
pp. 399-409 ◽  
Author(s):  
J P Frampton ◽  
M R Hynd ◽  
J C Williams ◽  
M L Shuler ◽  
W Shain

Sign in / Sign up

Export Citation Format

Share Document