Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis

2019 ◽  
Vol 149 ◽  
pp. 119-131 ◽  
Author(s):  
Matheus Pinheiro Ferreira ◽  
Fabien Hubert Wagner ◽  
Luiz E.O.C. Aragão ◽  
Yosio Edemir Shimabukuro ◽  
Carlos Roberto de Souza Filho
2021 ◽  
pp. 1-23
Author(s):  
Nik Ahmad Faris Nik Effendi ◽  
Nurul Ain Mohd Zaki ◽  
Zulkiflee Abd Latif ◽  
Mohd Nazip Suratman ◽  
Sharifah Norashikin Bohari ◽  
...  

Author(s):  
Ahlem Othmani ◽  
Alexandre Piboule ◽  
Oscar Dalmau ◽  
Nicolas Lomenie ◽  
Said Mokrani ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1868
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Quality tree species information gathering is the basis for making proper decisions in forest management. By applying new technologies and remote sensing methods, very high resolution (VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classification. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM algorithm proved the most effective pansharpening technique. The pixel- and object-based classification were applied to three pansharpened imageries using a random forest (RF) algorithm. The results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% for tree species classification based on pixel- and object-based approach, respectively. As expected, the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion on classification results was analyzed as well. Overall classification accuracy was improved by the spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, regardless of pixel- or object-based classification approaches, the influence of the use of pansharpening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas.


2009 ◽  
Vol 2 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Eetu Puttonen ◽  
Paula Litkey ◽  
Juha Hyyppä

Silva Fennica ◽  
2020 ◽  
Vol 54 (2) ◽  
Author(s):  
Olga Grigorieva ◽  
Olga Brovkina ◽  
Alisher Saidov

This study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time.


Sign in / Sign up

Export Citation Format

Share Document