Geo-CropSim: A Geo-spatial crop simulation modeling framework for regional scale crop yield and water use assessment

2022 ◽  
Vol 183 ◽  
pp. 34-53
Author(s):  
Varaprasad Bandaru ◽  
Raghu Yaramasu ◽  
Curtis Jones ◽  
R. César Izaurralde ◽  
Ashwan Reddy ◽  
...  
1996 ◽  
Vol 76 (3) ◽  
pp. 285-295 ◽  
Author(s):  
O. O. Akinremi ◽  
S. M. McGinn

Soil moisture controls many important processes in the soil-plant system and the extent of these processes cannot be quantified without knowing moisture status of the root zone. Of agronomic importance these include, seedling emergence, evapotranspiration, mineralization of the soil organic fraction, surface runoff, leaching and crop yield. Many models have been developed to simulate these processes based on algorithms of varying degrees of complexity that describe the dynamic nature of soil moisture at different temporal and spatial scales. This paper reviews the direct applications of soil moisture models in agronomy from the field to regional scale and for daily to seasonal time steps. At every level of detail, the lack of model validation beyond the region where it was developed is the main limitation to the application of soil moisture models in agronomy. At the field scale, models have been used for irrigation scheduling to ensure efficient utilization of irrigation water and maximize crop yields. Models are also used to estimate crop yield based on the growing season water use. The water use of crops is converted to biomass accumulation and grain yield using a water-use efficiency coefficient and a harvest index. Other empirical equations are available that relate cumulative crop water use directly to grain yield. On a regional scale, in a study of drought climatology on the Canadian prairie, we coupled a soil water model, the Versatile Soil Moisture Budget, with the Palmer Drought Index model to improve the modelling of soil moisture. This was found to improve the relationship of the Palmer drought index to wheat yield reduction resulting from drought. Key words: Soil moisture, modelling, water-use, evapotranspiration, aridity index, Canadian prairies


2015 ◽  
Vol 209-210 ◽  
pp. 49-58 ◽  
Author(s):  
Justin Van Wart ◽  
Patricio Grassini ◽  
Haishun Yang ◽  
Lieven Claessens ◽  
Andrew Jarvis ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 90-113
Author(s):  
Lal Prasad Amgain ◽  
Sudeep Marasini ◽  
Buddha BK

To appraise the major research outputs of agronomic crops and cropping systems and to direct the future research priorities of Agronomy Department of post-graduate (PG) program of Institute of Agriculture and Animal Sciences (IAAS), a rigorous review was accomplished on about two decadal (2000-2018) student’s thesis research works. The review revealed that the agronomic researches at IAAS from 2000 to 2012 were concentrated mostly in on-station farm of Rampur, Chitwan and found their focus on 11 food grain crops with five major themes viz. varietal evaluation, crop management, soil nutrient and weeds management, and crop simulation modeling. With the shifting of IAAS PG program from Rampur to Kirtipur in 2013, the major agronomic researches were found to be concentrated in on-farm stations due to transitional movement of IAAS to Agriculture and Forestry University, Nepal. A total of 115 agronomic studies were conducted on various crops, of which 92 were on cereals, 8 on legumes, oilseed and minor cereals including potato. There were records of 10 studies on rice-wheat and 3 studies on maize-based systems. The huge gaps between the potential and farmers' field yield and between the potential and research station yields for rice, maize and wheat crops suggested a great scope to raise yields of cereals by improved agronomical researches on varieties evaluation, crop and nutrient management and weed management. Simulation modeling study predicted that the varieties of rice and maize adopted at present could sustain the yields only for recent few years and needed for introduction of new climate resilient varieties, then after. Innovative and new researches on eco-region suited on-farm trails with variety identification, improved crop husbandry and soil nutrient management, improved weed and water management and on agro-meteorology, conservation agriculture, climate change adaptation and crop simulation modeling are advised as future research frontiers to uplift the productivity and reduce yield gaps of major food crops and to strengthen the academics of post-graduate research in near future.


Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 75
Author(s):  
Victor Hugo Ramírez-Builes ◽  
Jürgen Küsters

Coffee (Coffea spp.) represents one of the most important sources of income and goods for the agricultural sector in Central America, Colombia, and the Caribbean region. The sustainability of coffee production at the global and regional scale is under threat by climate change, with a major risk of losing near to 50% of today’s suitable area for coffee by 2050. Rain-fed coffee production dominates in the region, and under increasing climate variability and climate change impacts, these production areas are under threat due to air temperature increase and changes in rainfall patterns and volumes. Identification, evaluation, and implementation of adaptation strategies for growers to cope with climate variability and change impacts are relevant and high priority. Incremental adaptation strategies, including proper soil and water management, contribute to improved water use efficiency (WUE) and should be the first line of action to adapt the coffee crop to the changing growing conditions. This research’s objective was to evaluate at field level over five years the influence of fertilization with calcium (Ca+2) and potassium (K+) on WUE in two coffee arabica varieties: cv. Castillo and cv. Caturra. Castillo has resistance against coffee leaf rust (CLR) (Hemileia vastatrix Verkeley and Brome), while Caturra is not CLR-resistant. WUE was influenced by yield changes during the years by climate variability due to El Niño–ENSO conditions and CLR incidence. Application of Ca+2 and K+ improved the WUE under such variable conditions. The highest WUE values were obtained with an application of 100 kg CaO ha−1 year−1 and between 180 to 230 kg K2O ha−1 year−1. The results indicate that adequate nutrition with Ca+2 and K+ can improve WUE in the long-term, even underwater deficit conditions and after the substantial incidence. Hence, an optimum application of Ca+2 and K+ in rain-fed coffee plantations can be regarded as an effective strategy to adapt to climate variability and climate change.


2017 ◽  
Author(s):  
◽  
Akinola Mayowa Ikudayisi

Water is an essential natural resource for human existence and survival on the earth. South Africa, a water stressed country, allocates a high percentage of its available consumptive water use to irrigation. Therefore, it is necessary that we optimize water use in order to enhance food security. This study presents the development of mathematical models for irrigation scheduling of crops, optimal irrigation water release and crop yields in Vaal Harts irrigation scheme (VIS) of South Africa. For efficient irrigation water management, an accurate estimation of reference evapotranspiration (ETₒ) should be carried out. However, due to non-availability of enough historical data for the study area, mathematical models were developed to estimate ETₒ. A 20-year monthly meteorological data was collected and analysed using two data–driven modeling techniques namely principal component analysis (PCA) and adaptive neuro-fuzzy inference systems (ANFIS). Furthermore, an artificial neural network (ANN) model was developed for real time prediction of future ETₒ for the study area. The real time irrigation scheduling of potatoes was developed using a crop growth simulation model called CROPWAT. It was used to determine the crop water productivity (CWP), which is a determinant of the relationship between water applied and crop yield. Finally, a new and novel evolutionary multi-objective optimization algorithm called combined Pareto multi-objective differential evolution (CPMDE) was applied to optimize irrigation water use and crop yield on the VIS farmland. The net irrigation benefit, land area and irrigation water use of maize, potatoes and groundnut were optimized. Results obtained show that ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity have less significance on the value of ETₒ. Also, ANN models with one hidden layer showed better predictive performance compared with other considered configurations. A 5-day time step irrigation schedule data and graphs showing the crop water requirements and irrigation water requirements was generated. This would enable farmers know when, where, and how much water to apply to a given farmland. Finally, the employed CPMDE optimization algorithm produced a set of non-dominated Pareto optimal solutions. The best solution suggests that maize, groundnut and potatoes should be planted on 403543.44 m2, 181542.00 m2 and 352876.05 m2areas of land respectively. This solution generates a total net benefit of ZAR 767,961.49, total planting area of 937961.49 m2 and irrigation water volume of 391,061.52 m3. Among the three crops optimized, maize has the greatest land area, followed by potatoes and groundnut. This shows that maize is more profitable than potatoes and groundnut with respect to crop yield and water use in the study area.


2020 ◽  
Vol 12 (10) ◽  
pp. 4125 ◽  
Author(s):  
Qiang Liu ◽  
Hongwei Xu ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
...  

Soil water and nutrients are major factors limiting crop productivity. In the present study, soil water use efficiency (WUE) and crop yield of millet and soybean were investigated under nine fertilization regimes (no nitrogen (N) and no phosphorus (P) (CK), 120 kg ha−1 N and no P (N1P0), 240 kg ha−1 N and no P (N2P0), 45 kg ha−1 P and no N (N0P1), 90 kg ha−1 P and no N (N0P2), 120 kg ha−1 N and 45 kg ha−1 P (N1P1), 240 kg ha−1 N and 45 kg ha−1 P (N2P1), 120 kg ha−1 N and 90 kg ha−1 P (N1P2), 240 kg ha−1 N and 90 kg ha−1 P (N2P2)) in the Loess Plateau, China. We conducted fertilization experiments in two cultivation seasons and collected soil nutrient, water use, and crop yield data. Combined N and P fertilization resulted in the greatest increase in crop yield and WUE, followed by the single P fertilizer application, and single N fertilizer application. The control treatment, which consisted of neither P nor N fertilizer application, had the least effect on crop yield. The combined N and P fertilization increased soil organic matter (SOM) and soil total N, while soil water consumption increased in all treatments. SOM and total N content increased significantly when compared to the control conditions, by 27.1–81.3%, and 301.3–669.2%, respectively, only under combined N and P application. The combined N and P application promoted the formation of a favorable soil aggregate structure and improved soil microbial activity, which accelerated fertilizer use, and enhanced the capacity of soil to maintain fertilizer supply. Crop yield increased significantly in all treatments when compared to the control conditions, with soybean and millet yields increasing by 82.5–560.1% and 55–490.8%, respectively. The combined application of N and P fertilizers increased soil water consumption, improved soil WUE, and satisfied crop growth and development requirements. In addition, soil WUE was significantly positively correlated with crop yield. Our results provide a scientific basis for rational crop fertilization in semi-arid areas on the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document