Mesoscopic simulation on flexural behavior of single-way reinforced concrete slab with rebars subjected to localized corrosion

Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 815-827
Author(s):  
Liu Jin ◽  
Zhongmou Wang ◽  
Renbo Zhang ◽  
Xiuli Du
2014 ◽  
Vol 7 (6) ◽  
pp. 940-964
Author(s):  
M. V. A. Lima ◽  
J. M. F. Lima ◽  
P. R. L. Lima

This work presents a model to predict the flexural behavior of reinforced concrete slabs, combining the Mazars damage model for simulation of the loss of stiffness of the concrete during the cracking process and the Classical Theory of Laminates, to govern the bending of the structural element. A variational formulation based on the principle of virtual work was developed for the model, and then treated numerically according to the Finite Difference Energy Method, with the end result a program developed in Fortran. To validate the model thus proposed have been simulated with the program, some cases of slabs in flexure in the literature. The evaluation of the results obtained in this study demonstrated the capability of the model, in view of the good predictability of the behavior of slabs in flexure, sweeping the path of equilibrium to the rupture of the structural element. Besides the satisfactory prediction of the behavior observed as positive aspects of the model to its relative simplicity and reduced number of experimental parameters necessary for modeling.


2011 ◽  
Vol 71-78 ◽  
pp. 712-716
Author(s):  
An Duan ◽  
Wei Liang Jin

The purpose of this research is to investigate the influence of the freeze-thaw cycles on the flexural behavior of reinforced concrete members. The variation of the concrete stress-strain relationship due to frozen-thawed deterioration was considered. The temperature distribution was calculated based on the heat conduction theory, and the damaged region affected by freeze-thaw cycles was determined. By using Reponse-2000 program, the flexural behaviour of a reinforced concrete slab was analyzed and predicted. The analytical results show that with increase of number of freeze-thaw cycles, the yield moment, the ultimate moment and the curvature ductility decreased, while the relative depth of neutral axis and the midspan deflection increased.


2017 ◽  
Vol 5 (1) ◽  
pp. 104-119
Author(s):  
Mazen D. Abdullah ◽  
Mustafa Sheriff ◽  
Aqeel Hateem

     This paper presents a study of the flexural behavior of strengthened and repaired reinforced concrete two slabs by ferrocement layers.  This study included testing 11 simply supported two way slabs, which include 1 control slabs, 8 strengthened slabs and 2 repaired slabs. In the strengthened slabs the effect of the thickness of ferrocement layers, the compressive strength for mortar and number of wire mesh layers of ferrocement on the ultimate load, mid span deflection at ultimate load and intensity of cracks was investigate. In the repaired part the slabs were loaded to (74 %) of measured ultimate load of control slab. The effect of connection method between repaired slabs and ferrocement jacket on the ultimate load, mid span deflection at ultimate load and intensity of cracks was examined. All reinforced concrete slab specimens were designed of the same dimensions and reinforce identically to fail in flexure. All slabs have been tested in simply supported conditions subjected to central concentrated load. The experimental results show that the ultimate loads are increased by about (4.6-19.2%) for the slabs strengthened with ferrocement with respect to the unstrengthened reinforced concrete slab (control slab).


2021 ◽  
Vol 261 ◽  
pp. 02042
Author(s):  
Mingqiu Xu ◽  
Jianhua Shao ◽  
Baijian Tang ◽  
Hongming Li

Order to investigate the failure effect of textile reinforced concrete (TRC) plate under bending load, the corresponding finite element model is established. By comparing the numerical simulation results with the experimental results, the rationality and feasibility of the finite element model are verified, and then the crack extension of TRC and the ultimate strain of carbon textile are analyzed. The failure mode of the slab under bending load is obtained, and it is found that the carbon textile concrete slab has better reinforcement effect, which greatly improves the safety performance of concrete members.


Sign in / Sign up

Export Citation Format

Share Document