Axial compression stability of thin double-steel-plate and concrete composite shear wall

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3866-3881
Author(s):  
Zhihua Chen ◽  
Zhenyu Zi ◽  
Ting Zhou ◽  
Yapeng Wu
2021 ◽  
Vol 187 ◽  
pp. 106944
Author(s):  
Wenhui He ◽  
Yikun Wan ◽  
Yuyu Li ◽  
JinBin Bu ◽  
Jianliang Deng ◽  
...  

2020 ◽  
Vol 23 (8) ◽  
pp. 1629-1643
Author(s):  
Zhi Zhou ◽  
Jiang Qian ◽  
Wei Huang

This article investigates the shear strength of steel plate reinforced concrete shear wall under cyclic loads. A nonlinear three-dimensional finite element model in ABAQUS was developed and validated against published experimental results. Then, a parametric study was conducted to evaluate the effects of the parameters on the lateral capacity of composite shear wall, including shear span ratio, concrete strength, axial load ratio, steel plate ratio and transverse reinforcement ratio of the web. Furthermore, a modified formula of shear strength of composite shear wall was proposed. Regression analyses were used to obtain the contribution coefficients of different parts from 720 finite element models. Finally, the shear strengths of specimens from published tests were compared with design strengths calculated using the proposed formula, American Institute of Steel Construction Provisions and Chinese Code. It was found that the Chinese Code well predicts the shear strength of composite shear wall of a steel plate ratio of less than 5%, while unsafely predicting that of a higher steel plate ratio. The American Institute of Steel Construction Provisions predictions are quite conservative because the contribution of the reinforced concrete is neglected. The modified formula safely predicts the shear strength of composite shear wall.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuliang Wang ◽  
Congcong Wang ◽  
Zhixing Cao

Based on the research of composite walls at home and abroad, a construction method of continuous opening of the insulation layer in the specimen is proposed. In the edge component of the composite wall, the insulation layer should be thinned appropriately, the concrete on both sides should be thickened correspondingly, and U-shaped reinforcement should be used instead of stirrup. To study its axial compression test performance, five 1/2 scale composite shear wall specimens are tested under axial compression, including three composite wall specimens and two solid wall contrast specimens. The failure mode, load-bearing performance, deformation performance, and the collaborative work performance of wall are analyzed. The results show that the failure characteristics of the composite shear wall are similar to those of the solid wall, with splitting cracks at the corners and inverted triangular conical splitting at the top of the wall along the wall height direction, with no obvious bulging in the middle of the wall. The tie action of the ribs makes the concrete walls on both sides of the composite shear wall have good integrity and cooperative performance; the installation of the thermal insulation layer increases the overall thickness of the wall, improves the stability of the composite wall, and makes the composite wall axially compressed. The bearing capacity is not significantly reduced compared to the solid walls. Finally, according to the test results, the calculation formula of axial compression bearing capacity of composite shear wall is given, which provides the basis for the formulation of the code and engineering application.


2021 ◽  
Vol 11 (4) ◽  
pp. 292-310
Author(s):  
Tadele Ergete Tadesse ◽  
Temesgen Wondimu Aure

Steel-Concrete composite shear wall has become popular recently as it compensates for the disadvantages of concrete and steel plate shear walls and combine the advantage of both. However, there is no detail study that identifies the most critical parameters. This study aims at investigation of steel plate-concrete composite shear wall behavior under cyclic loading with variables such as concrete strength, grade of steel plate, total number of tie constraints and thickness of steel plate. ABAQUS/Standard is used for numerical modeling in this study. As the concrete strength decreases from 86.1Mpa to 45Mpa, the load capacity declined by 11.76% and higher stiffness was recorded in specimen with higher grade of concrete. The ductility factor is inversely proportional to grade of concrete from 86.1Mpa to 60Mpa which increases from 4.26 to 4.68 and the ductility factor of specimen with 45Mpa strength is recorded as 3.81. The energy dissipation capacity is directly proportional to the grade of concrete used. Using high grade steel plate increases the lateral load capacity significantly and exhibited more ductile behavior. Specimen with S355 steel grade exhibited 14.01% increment of the average load capacity while the specimen with S245 steel grade has shown reduction by 9.21%. Similarly, the ductility factor and energy dissipation capacity of specimen with variable grade of steel are directly proportional. Reduction of tie constraints has no significant effect on the behavior in this study due to high confinement effect of concrete by surrounding steel plate. Specimens with thicker steel plate exhibited good energy dissipation capacity.


2018 ◽  
Vol 22 (3) ◽  
pp. 656-669 ◽  
Author(s):  
Hetao Hou ◽  
Weiqi Fu ◽  
Canxing Qiu ◽  
Jirun Cheng ◽  
Zhe Qu ◽  
...  

This study proposes a new type of shear wall, namely, the concrete-filled steel tube composite shear wall, for high performance seismic force resisting structures. In order to study the seismic behavior of concrete-filled steel tube composite shear wall, cyclic loading tests were conducted on three full-scale specimens. One conventional reinforced concrete shear wall was included in the testing program for comparison purpose. Regarding the seismic performance of the shear walls, the failure mode, deformation capacity, bearing capacity, ductility, hysteretic characteristics, and energy dissipation are key parameters in the analysis procedure. The testing results indicated that the bearing capacity, the ductility, and the energy dissipation of the concrete-filled steel tube composite shear walls are greater than that of conventional reinforced concrete shear walls. In addition, the influence of axial compression ratio on the seismic behavior of concrete-filled steel tube composite shear wall is also investigated. It was found that higher axial compression ratio leads to an increase in the bearing capacity of concrete-filled steel tube composite shear walls while a reduction in the ductility capacity.


Sign in / Sign up

Export Citation Format

Share Document