scholarly journals Analysis on the Seismic Performance of Steel Fiber-Reinforced High-Strength Concrete Beam–Column Joints

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4016
Author(s):  
Ke Shi ◽  
Mengyue Zhang ◽  
Tao Zhang ◽  
Ru Xue ◽  
Pengfei Li

The present research study aims to investigate numerically the behavior of steel fiber-reinforced high-strength concrete (SFRHC) beam–column joints (BCJs) under seismic action. Based on the plastic damage constitutive model of concrete and elastic–plastic mixed-strengthen constitutive model of steel material, the finite element software ABAQUS was utilized to establish the 3D finite element (FE) model of BCJs. Additionally, the feasibility and accuracy of the numerical simulation were verified by comparing the computed results and experimental observations in terms of the hysteresis curves, skeleton curves, and failure mode. Furthermore, based on the validated FE modeling approach, load vs. displacement hysteresis curves of SFRHC–BCJs during the loading process were analyzed in detail; the failure process was also investigated. Furthermore, the effect of various parameters on the seismic behavior of BCJs was analyzed comprehensively, including the concrete strength, the volume ratio of steel fiber, and the stirrup ratio in the core area. Finally, parametric studies illustrated that increasing the concrete strength helps in enhancing the ultimate load, while the ductility decreased noticeably. Both adding the steel fiber and increasing the stirrup ratio can significantly improve the seismic performance of BCJs.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wang Tingyan ◽  
Zhou Yun ◽  
Zhang Junwei

In this paper, the seismic behavior of fiber-reinforced polymer (FRP) strengthened and unstrengthened steel fiber-reinforced high-strength concrete frame joints under low cyclic loading was tested. Then, the nonlinear finite element program was used to simulate the seismic behavior of FRP strengthened and unstrengthened steel fiber-reinforced high-strength concrete frame joints under low cyclic repeated load. The influence of FRP bond direction on the seismic behavior of steel fiber-reinforced high-strength concrete frame joints was studied. Through the comparison of the test values and numerical simulation values of the hysteretic curve, skeleton curve, energy dissipation capacity, displacement ductility, bearing capacity degradation, stiffness degradation, and other performance indexes of frame joints, the rule was obtained. The results showed that the 45° bonding direction of carbon fiber cloth is better than the 0° bonding direction, and the digital simulation results are in good agreement with the test results. Therefore, the constitutive model, element, end constraint, and loading method used in the finite element numerical simulation of this paper were reasonable, which can provide reference for the similar research in the future.


2010 ◽  
Vol 163-167 ◽  
pp. 1586-1591
Author(s):  
Jie Lei ◽  
Dan Ying Gao ◽  
Hua Fan

Based on the experiments of 10 model specimens of fiber reinforced high strength concrete three-pile caps with the dimension of 831mm×831mm×831mm, the mechanical behavior and the important factors on the cracking load and ultimate bearing capacity of fiber reinforced high strength concrete three-pile caps were researched. The study indicates that with increasing of concrete strength, the volume fraction of steel fiber, the effective thickness and reinforcement ratio of pile cap, the bearing capacity of three-pile caps improves largely. At the same time the type of steel fiber and steel ratio have remarkable effects on the bearing capacity. The results are valuable for establishing bearing capacity calculation formulas of fiber reinforced high strength concrete three-pile caps and improving “the Technical Specification for fiber Reinforced Concrete Structure.”


2012 ◽  
Vol 238 ◽  
pp. 190-195
Author(s):  
Dan Ying Gao ◽  
Ming Zhang

Based on the fatigue test, 8 steel fiber reinforced high-strength concrete beams are studied, the influencing factors of crack width are discussed in the paper, and the calculation method of crack width under fatigue load is investigated. Based on the analysis of test results, the formulas are put forward. The results show that adding steel fiber into the high-strength concrete beams can prevent the development of the fatigue crack, fatigue crack widths are decreased by 26.0%~121.0% and the calculated values have good agreement with test date.


2012 ◽  
Vol 476-478 ◽  
pp. 1568-1571
Author(s):  
Ting Yi Zhang ◽  
Guang He Zheng ◽  
Ping Wang ◽  
Kai Zhang ◽  
Huai Sen Cai

Through the three-point bending test on the specimens of steel fiber reinforced high strength concrete (SFHSC), the effects of influencing factors including water-cement ratio (W/C) and the fiber volume fraction (ρf) upon the critical value(JC) of J integral were studied. The results show that the variation tendencies of JC are different under different factors. JC meets the linear statistical relation with W/C, ρf, respectively.


2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


Sign in / Sign up

Export Citation Format

Share Document