Effects of shielding gas temperature and flow rate on the welding fume particle size distribution

2017 ◽  
Vol 114 ◽  
pp. 55-61 ◽  
Author(s):  
V.I. Vishnyakov ◽  
S.A. Kiro ◽  
M.V. Oprya ◽  
A.A. Ennan
Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1027
Author(s):  
Lianghui Xu ◽  
Xianglin Zhou ◽  
Jinghao Li ◽  
Yunfei Hu ◽  
Hang Qi ◽  
...  

In this work, an atomizer with a de Laval-type nozzle is designed and studied by commercial computational fluid dynamics (CFD) software, and the secondary breakup process during atomization is simulated by two-way coupling and the discrete particle model (DPM) using the Euler-Lagrange method. The simulation result demonstrates that the gas flow patterns greatly change with the introduction of liquid droplets, which clearly indicates that the mass loading effect is quite significant as a result of the gas-droplet interactions. An hourglass shape of the cloud of disintegrating molten metal particles is observed by using a stochastic tracking model. Finally, this simulation approach is used for the quantitative evaluation of the effects of altering the atomizing process conditions (gas-to-melt ratio, operating pressure P, and operating gas temperature T) and nozzle geometry (protrusion length h, half-taper angle α, and gas slit nozzle diameter D) on the particle size distribution of the powders produced.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Linjing Zhu ◽  
Hongqiao Lan ◽  
Bingjing He ◽  
Wei Hong ◽  
Jun Li

Encapsulation of menthol in beeswax was prepared by a modified particles from gas-saturated solutions (PGSS) process with controlling the gas-saturated solution flow rate. Menthol/beeswax particles with size in the range of 2–50 μm were produced. The effects of the process conditions, namely, the pre-expansion pressure, pre-expansion temperature, gas-saturated solution flow rate, and menthol composition, on the particle size, particle size distribution, and menthol encapsulation rate were investigated. Results indicated that in the range of studied conditions, increase of the pressure, decrease of the gas-saturated solution flow rate, and decrease of the menthol mass fraction can decrease the particle size and narrow particle size distribution of the produced menthol/beeswax microparticles. An N2-blowing method was proposed to measure the menthol release from the menthol/beeswax microparticles. Results showed that the microparticles have obvious protection of menthol from its volatilization loss.


Author(s):  
K. J. Daun ◽  
B. J. Stagg ◽  
F. Liu ◽  
G. J. Smallwood ◽  
D. R. Snelling

Time-resolved laser-induced incandescence is a powerful tool for determining the physical characteristics of aerosol dispersions of refractory nano-particles. In this procedure, particles within a small aerosol volume are heated with a nano-second laser pulse, and the temporal incandescence of the particles is then measured as they return to the ambient gas temperature. It is possible to infer particle size distribution from the temporal decay of the LII signal since the cooling rate of an individual particle depends on its area-to-volume ratio. This requires solving a mathematically ill-posed inverse problem, however, since the measured LII signal is due to the incandescence contributed by all particle sizes within the aerosol volume. This paper reviews techniques proposed in the literature for recovering particle size distributions from time-resolved LII data. The characteristics of this ill-posed problem are then discussed in detail, particularly the issues of solution stability and uniqueness. Finally, the accuracy and stability of each method is evaluated by performing a perturbation analysis, and the overall performance of the techniques is compared.


2007 ◽  
Vol 534-536 ◽  
pp. 1613-1616
Author(s):  
Satoshi Uenosono ◽  
Yukiko Ozaki

The filling property of the binder treated iron based powder made of atomized iron powder was compared with that of the one made of reduced iron powder. The latter one showed a better filling property than the former one, although the original reduced powder showed a worse flow rate. Changing the particle size distribution of the original atomized powder from wide to narrow like the original reduced iron powder, improved the filling property of the binder treated powder. As a result, the particle size distribution of the original iron powder was found to strongly affect the filling property of the binder treated powder.


1977 ◽  
Vol 66 (10) ◽  
pp. 1462-1464 ◽  
Author(s):  
Ashok Mehta ◽  
Kenneth Adams ◽  
M.A. Zoglio ◽  
J.T. Carstensen

2007 ◽  
Vol 12 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Yue Zhou ◽  
Trevor L. Brasel ◽  
Dean Kracko ◽  
Yung-Sung Cheng ◽  
Amitkumar Ahuja ◽  
...  

Author(s):  
MingYan Gu ◽  
Dawei Yan ◽  
XianHui He ◽  
Dan Yan ◽  
FengShan Liu ◽  
...  

The combustion and NO formation characteristics of coal particles of different size distributions in a laminar gas flow were investigated by numerical simulation. The variation of coal particle size distribution was obtained by changing the mass ratio of small-sized coal to large-sized coal. The gas-phase combustion was modeled using GRI-Mech 3.0. The particle motion was simulated using a trajectory model. The results show that the coal particle size distribution has a significant impact on combustion process and NO distribution. Coal particles of uniform size at either 105 or 75 μm results in a higher NO concentration than coal consisting of both the large and the small particles. The smaller-sized coal particles experience a rapid volatile release, a higher maximum gas temperature, and a higher maximum NO concentration. Increasing the mass ratio of the smaller-sized coal particles changes the gas temperature and the averaged NO distribution and lowers the maximum NO concentration.


Sign in / Sign up

Export Citation Format

Share Document