scholarly journals Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method

Author(s):  
Elnaz Neinavaz ◽  
Andrew K. Skidmore ◽  
Roshanak Darvishzadeh
2020 ◽  
Author(s):  
Elnaz Neinavaz ◽  
Andrew K. Skidmore ◽  
Roshanak Darvishzadeh

<p>Precise estimation of land surface emissivity (LSE) is essential to predict land surface energy budgets and land surface temperature, as LSE is an indicator of material composition. There exist several approaches to LSE estimation employing remote sensing data; however, the prediction of LSE remains a challenging task. Among the existing approaches for calculating LSE, the NDVI threshold method appears to hold well over vegetated areas. To apply the NDVI threshold method, it is necessary to know the proportion of vegetation cover (Pv). This research aims to investigate the impact of Pv's prediction accuracy on the estimation of LSE over the forest ecosystem. In this regard, a field campaign coinciding with a Landsat-8 overpass was undertaken for the mixed temperate forest of the Bavarian Forest National Park, in southeastern Germany. The Pv in situ measurements were made for 37 plots. Four vegetation indices, namely NDVI, variable atmospherically resistant index, wide dynamic range vegetation index, and three-band gradient difference vegetation index, were applied to predict Pv for further use in LSE computing. Unlike previous studies that suggested variable atmospherically resistant index can be estimated Pv with higher prediction accuracy compared to NDVI over the agricultural area, our results showed that the prediction accuracy of Pv is not different when using NDVI over the forest (R<sup>2</sup><sub>CV </sub>= 0.42, RMSE<sub>CV </sub>= 0.06). Pv was measured with the lowest accuracy using the wide dynamic range vegetation index (R<sup>2</sup><sub>CV </sub>= 0.014, RMSE<sub>CV </sub>= 0.197) and three-band gradient difference vegetation index (R<sup>2</sup><sub>CV </sub>= 0.032, RMSE<sub>CV </sub>= 0.018).  The results of this study also revealed that the variation in the prediction accuracy of the Pv has an impact on the results of LSE calculation.</p>


2009 ◽  
Author(s):  
Eduardo Caselles ◽  
Francisco J. Abad ◽  
Enric Valor ◽  
Joan M. Galve ◽  
Vicente Caselles

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Caixia Gao ◽  
Enyu Zhao ◽  
Chuanrong Li ◽  
Yonggang Qian ◽  
Lingling Ma ◽  
...  

The aim of this study is to evaluate the aerosol influence on LST retrieval with two algorithms (split-window (SW) method and a four-channel based method) using simulated data under typical conditions. The results show that the root mean square error (RMSE) decreases to approximately 2.3 K for SW method and 1.5 K for four channel based method when VZA = 60° and visibility = 3 km; an RMSE would be increased by approximately 1.0 K when visibility varies from 3 km to 23 km. Moreover, a detailed sensitivity analysis under a visibility of 3 km and 23 km is performed in terms of uncertainties of land surface emissivity (LSE), water vapor content (WVC), and instrument noise, respectively. It is noted that the four-channel based method is more sensitive to LSE than SW method, especially for dry atmosphere; LST error caused by a WVC uncertainty of 20% is within 1.5 K for SW method and within 0.8 K for four-channel based method; the instrument noise would introduce LST error with a maximum standard deviation of 0.5 K and 0.04 K for the four-channel based method and SW method, respectively.


2018 ◽  
Vol 35 (6) ◽  
pp. 1283-1298 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou ◽  
F. Weng ◽  
M. Sun

AbstractThis study compares the simulation biases of Advanced Himawari Imager (AHI) brightness temperature to observations made at night over China through the use of three land surface emissivity (LSE) datasets. The University of Wisconsin–Madison High Spectral Resolution Emissivity dataset, the Combined Advanced Spaceborne Thermal Emission and Reflection Radiometer and Moderate Resolution Imaging Spectroradiometer Emissivity database over Land High Spectral Resolution Emissivity dataset, and the International Geosphere–Biosphere Programme (IGBP) infrared LSE module, as well as land skin temperature observations from the National Basic Meteorological Observing stations in China are used as inputs to the Community Radiative Transfer Model. The results suggest that the standard deviations of AHI observations minus background simulations (OMBs) are largely consistent for the three LSE datasets. Also, negative biases of the OMBs of brightness temperature uniformly occur for each of the three datasets. There are no significant differences in OMB biases estimated with the three LSE datasets over cropland and forest surface types for all five AHI surface-sensitive channels. Over the grassland surface type, significant differences (~0.8 K) are found at the 10.4-, 11.2-, and 12.4-μm channels if using the IGBP dataset. Over nonvegetated surface types (e.g., sandy land, gobi, and bare rock), the lack of a monthly variation in IGBP LSE introduces large negative biases for the 3.9- and 8.6-μm channels, which are greater than those from the two other LSE datasets. Thus, improvements in simulating AHI infrared surface-sensitive channels can be made when using spatially and temporally varying LSE estimates.


2010 ◽  
Vol 115 (D22) ◽  
Author(s):  
Zhenglong Li ◽  
Jun Li ◽  
Xin Jin ◽  
Timothy J. Schmit ◽  
Eva E. Borbas ◽  
...  

2020 ◽  
Vol 57 (21) ◽  
pp. 212801
Author(s):  
官元红 Guan Yuanhong ◽  
王文君 Wang Wenjun ◽  
陆其峰 Lu Qifeng ◽  
鲍艳松 Bao Yansong ◽  
郑婷文 Zheng Tingwen

Sign in / Sign up

Export Citation Format

Share Document