Crystallization kinetics of new compound of V2O5–PbO–Li2O–Fe2O3 glass using differential thermal analysis

2009 ◽  
Vol 482 (1-2) ◽  
pp. 440-446 ◽  
Author(s):  
E.R. Shaaban ◽  
M.Y. Hassaan ◽  
A.G. Mostafa ◽  
A.M. Abdel-Ghany
2008 ◽  
Vol 40 (3) ◽  
pp. 333-338 ◽  
Author(s):  
S. Grujic ◽  
N. Blagojevic ◽  
M. Tosic ◽  
V. Zivanovic ◽  
J. Nikolic

Crystallization kinetics of K2O?TiO2?3GeO2 glass was investigated by differential thermal analysis (DTA). Experiments were performed on powder samples with a particle size < 0.037 mm. The glass samples were heated at different rates in the temperature range 20-750?C. The kinetic parameters, activation energy for the crystallization process, Ec and Avrami exponent, n were calculated. Powder X-ray diffraction analysis (XRD) of crystallized glass reveals the presence of crystalline K2O?TiO2?3GeO2 indicating polymorphic crystallization with interface controlled crystal growth.


2018 ◽  
Author(s):  
Asel Sartbaeva ◽  
Paul R. Raithby ◽  
Remi Castaing ◽  
Antony Nearchou

Through a combination of thermogravimetry, mass spectrometry and differential thermal analysis, we demonstrate for the first time that all four zeolites show experimental differences in their host-guest interactions with 18C6. In addition, we have estimated the kinetics of 18C6 decomposition, which is a technique that has not been applied to zeolites previously. Using these findings as a toolkit, a more rational use of OSDAs can be utilised to prepare designer zeolites. Furthermore, the new methodologies presented herein can be applied to current zeolites, such as MFI-type zeolites used in the petrochemical industry.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


Sign in / Sign up

Export Citation Format

Share Document