Effect of starting powder particle size and heating rate on spark plasma sintering of Fe Ni alloys

2016 ◽  
Vol 678 ◽  
pp. 241-248 ◽  
Author(s):  
M.B. Shongwe ◽  
M.M. Ramakokovhu ◽  
S. Diouf ◽  
M.O. Durowoju ◽  
B.A. Obadele ◽  
...  
2019 ◽  
Vol 76 (3-4) ◽  
pp. 94-98
Author(s):  
N. A. Rubinkovskii ◽  
D. P. Shornikov ◽  
A. V. Tenishev ◽  
A. G. Zaluzhnyi ◽  
A. G. Zholnin

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Kirill V. Kuskov ◽  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Illia Serhiienko ◽  
Alexander S. Mukasyan

Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.


2021 ◽  
Vol 1758 (1) ◽  
pp. 012022
Author(s):  
E A Lantsev ◽  
N V Malekhonova ◽  
V N Chuvil`deev ◽  
A V Nokhrin ◽  
M S Boldin ◽  
...  

Author(s):  
Akeem Yusuf Adesina ◽  
Muzafar Hussain ◽  
Abbas Saeed Hakeem ◽  
Abdul Samad Mohammed ◽  
Muhammad Ali Ehsan ◽  
...  

Author(s):  
Yingchun Shan ◽  
Xialu Wei ◽  
Xiannian Sun ◽  
Elisa Torresani ◽  
Eugene A. Olevsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document