scholarly journals Comparison of Conventional and Flash Spark Plasma Sintering of Cu–Cr Pseudo-Alloys: Kinetics, Structure, Properties

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Kirill V. Kuskov ◽  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Illia Serhiienko ◽  
Alexander S. Mukasyan

Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.

Author(s):  
Akeem Yusuf Adesina ◽  
Muzafar Hussain ◽  
Abbas Saeed Hakeem ◽  
Abdul Samad Mohammed ◽  
Muhammad Ali Ehsan ◽  
...  

Author(s):  
Yingchun Shan ◽  
Xialu Wei ◽  
Xiannian Sun ◽  
Elisa Torresani ◽  
Eugene A. Olevsky ◽  
...  

2005 ◽  
Vol 287 ◽  
pp. 335-339 ◽  
Author(s):  
Kyeong Sik Cho ◽  
Kwang Soon Lee

Rapid densification of the SiC-10, 20, 30, 40wt% TiC powder with Al, B and C additives was carried out by spark plasma sintering (SPS). In the present SPS process, the heating rate and applied pressure were kept at 100°C/min and at 40 MPa, while the sintering temperature varied from 1600-1800°C in an argon atmosphere. The full density of SiC-TiC composites was achieved at a temperature above 1800°C by spark plasma sintering. The 3C phase of SiC in the composites was transformed to 6H and 4H by increasing the process temperature and the TiC content. By tailoring the microstructure of the spark-plasma-sintered SiC-TiC composites, their toughness could be maintained without a notable reduction in strength. The strength of 720 MPa and the fracture toughness of 6.3 MPa·m1/2 were obtained in the SiC-40wt% TiC composite prepared at 1800°C for 20 min.


2018 ◽  
Vol 281 ◽  
pp. 661-666
Author(s):  
Jia Lin Gao ◽  
Peng Liu ◽  
Jian Zhang ◽  
Xiao Dong Xu ◽  
Ding Yuan Tang

Zinc Selenide ceramic was successfully fabricated by spark plasma sintering in the study. The ZnSe raw powders were handled with two different methods such as grinding and planetary ball milling, respectively. The relative density, microstructure and transmittance of the ZnSe ceramic sintered under the same sintering parameter with two type powders was investigated. The results shown that the performance of the powder processed by ball milling was more effective than that by grinding. Furthermore, the maximum relative density can reach 99.8% when the ZnSe powder treated by ball milling were sintered at 950 oC for 30 min with the heating rate of 10 oC/min under 100 MPa.


2020 ◽  
Vol 51 (4) ◽  
pp. 1799-1807
Author(s):  
Ruidi Li ◽  
Pengda Niu ◽  
Shenghua Deng ◽  
Linjun Tang ◽  
Siyao Xie ◽  
...  

2011 ◽  
Vol 95 (2) ◽  
pp. 453-456 ◽  
Author(s):  
Beatriz Núñez-González ◽  
Angel L. Ortiz ◽  
Fernando Guiberteau ◽  
Mats Nygren

2015 ◽  
Vol 50 ◽  
pp. 36-39 ◽  
Author(s):  
Yuanzhi Chen ◽  
Le Zhang ◽  
Jian Zhang ◽  
Peng Liu ◽  
Tianyuan Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document