Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber

2018 ◽  
Vol 744 ◽  
pp. 629-636 ◽  
Author(s):  
Dandan Min ◽  
Wancheng Zhou ◽  
Yuchang Qing ◽  
Fa Luo ◽  
Dongmei Zhu
Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 809
Author(s):  
Rozhin Sadeghi ◽  
Abbas Sharifi ◽  
Marta Orlowska ◽  
Isabelle Huynen

The current research reports the preparation of a microwave absorber containing CoFe2O4/NiFe2O4/Carbon fiber (H/S/CF) coated with polypyrrole polymer (PPy@H/S/CF) through sol-gel and in-situ polymerization processes. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), and a vector network analyzer (VNA) are utilized to evaluate the features of the prepared composite. The microstructure analysis results revealed carbon fibers well decorated with submicron-size particles having hard/soft magnetic phases and thoroughly coated with polymer. The paraffin-based microwave absorber sample filled with 45 wt.% of PPy@H/S/CF has simultaneously both magnetic and dielectric losses in the 8.2–12.4  GHz frequency range. The absorber is used in a Salisbury screen configuration aiming at reducing the radar cross-section of objects. A minimum reflection loss of −55  dB at 10.6 GHz frequency with 5 GHz bandwidth is obtained for the sample with a 2  mm thickness. Different mechanisms, such as interfacial polarization, ferromagnetic resonance, and electron hopping, are the main factors for achieving such an appropriate microwave absorption. These results suggest that the PPy@H/S/CF composite is an ideal candidate for microwave absorption applications requiring high performance and low thickness.


2008 ◽  
Author(s):  
Andrew Littlefield ◽  
Edward Hyland ◽  
Jack Keating

Sign in / Sign up

Export Citation Format

Share Document