Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting

2018 ◽  
Vol 750 ◽  
pp. 617-625 ◽  
Author(s):  
Hangyu Yue ◽  
Yuyong Chen ◽  
Xiaopeng Wang ◽  
Fantao Kong
2019 ◽  
Vol 744 ◽  
pp. 290-298 ◽  
Author(s):  
Quan Zhou ◽  
Muhammad Dilawer Hayat ◽  
Gang Chen ◽  
Song Cai ◽  
Xuanhui Qu ◽  
...  

2014 ◽  
Vol 20 (6) ◽  
pp. 541-550 ◽  
Author(s):  
Yujie Quan ◽  
Philipp Drescher ◽  
Faming Zhang ◽  
Eberhard Burkel ◽  
Hermann Seitz

Purpose – The purpose of this paper is to fabricate cellular Ti6Al4V with carbon nanotube (CNT)-like structures by selective electron beam melting and study the resultant mechanical properties based on each respective geometry to provide fundamental information for optimizing molecular architectures and predicting the mechanical properties of cellular solids. Design/methodology/approach – Cellular Ti6Al4V with CNT-like zigzag and armchair structures are fabricated by selected electron beam melting. The microstructures and mechanical properties of these samples are evaluated utilizing scanning electron microscopy, synchrotron radiation X-ray and compressive tests. Findings – The mechanical properties of the cellular solids depend on the geometry of strut architectures. The armchair-structured Ti6Al4V samples exhibit Young’s modulus from 501.10 to 707.60 MPa and compressive strength from 8.73 to 13.45 MPa. The zigzag structured samples demonstrate Young’s modulus from 548.19 to 829.58 MPa and compressive strength from 9.32 to 16.21 MPa. The results suggest that the zigzag structure of the Ti6Al4V cellular solids can achieve improved mechanical properties and the mechanism for the enhanced mechanical properties in the zigzag structures was revealed. Originality/value – The results provide an innovative example for modulating the mechanical properties of cellular titanium by adjusting the unit cell geometry. The Ti6Al4V cellular solids with single-walled CNT-like structures could be used as light-weight construction components or filters in industries. The Ti6Al4V with multiwalled CNT-like structures could be used as new scaffolds for biomedical applications.


2012 ◽  
Vol 706-709 ◽  
pp. 488-491 ◽  
Author(s):  
Hidetsugu Fukuda ◽  
Hiroyuki Takahashi ◽  
Koichi Kuramoto ◽  
Takayoshi Nakano

Electron beam melting (EBM) is a promising fabrication technique for directly producing metal products from powder as the starting material. Powders are provided as a thin layer (~100 μm) and melted layer by layer with an electron beam. In this study, the effects of the energy density of the incident beam on the mechanical properties of Ti–6 mass% Al–4 mass% V alloy products fabricated through EBM were examined. The products were fabricated using an electron beam at various energy densities depending on the electron beam current. The microstructures and crystallographic orientations were observed using optical microscopy and electron backscatter diffraction (EBSD), respectively. Compression tests were carried out in 2 loading directions using a mechanical testing machine equipped with strain gauges, one perpendicular (x–y direction) and the other parallel (z direction) to the stacking direction. In principle, the microstructure consisted of an acicular-shaped α phase (hcp lattice) and a small-volume β phase (bcc lattice). In addition, columnar grains elongated toward the z direction appeared during the repeated melting and solidification that occurred during the EBM process. An increase in the beam current of the incident beam enlarged the α grains and increased the relative density, resulting in the related Young’s modulus of the products. The energy density caused by the beam current also introduces anisotropy in the deformation behavior depending on the loading axis toward the stacking direction. This is closely related to the cast defect arranged along the stacking layers. It was concluded that the mechanical properties of the Ti–6 mass% Al–4 mass% V alloy products formed through EBM were very sensitive to the incident beam current and stacking direction, resulting in the exhibition of anisotropic deformation behavior within a limited range of energy density.


Sign in / Sign up

Export Citation Format

Share Document