The synthesis and tunable optical properties of two-dimensional alloyed Mo1-W S2 monolayer with in-plane composition modulations (0≤x≤1)

2019 ◽  
Vol 784 ◽  
pp. 213-219 ◽  
Author(s):  
Fei Chen ◽  
Su Ding ◽  
Weitao Su
Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13315-13319 ◽  
Author(s):  
Valeria S. Marangoni ◽  
Lucas D. Germano ◽  
Cecilia C. C. Silva ◽  
Eunézio A. de Souza ◽  
Camila M. Maroneze

Controlled growth of 2D gold nanostructures with tunable optical properties on the surface of graphene oxide by a surfactant-free method.


2011 ◽  
Vol 50 (21) ◽  
pp. 3860 ◽  
Author(s):  
Huang-Ming Lee ◽  
Jia-Hong Shyu ◽  
Lance Horng ◽  
Jong-Ching Wu

Vacuum ◽  
2021 ◽  
Vol 187 ◽  
pp. 110074
Author(s):  
Roger Magnusson ◽  
Biplab Paul ◽  
Per Eklund ◽  
Grzegorz Greczynski ◽  
Jens Birch ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4233-4252
Author(s):  
Yael Gutiérrez ◽  
Pablo García-Fernández ◽  
Javier Junquera ◽  
April S. Brown ◽  
Fernando Moreno ◽  
...  

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.


2021 ◽  
Vol 130 ◽  
pp. 114690
Author(s):  
Xinxin Deng ◽  
Bingcheng Luo ◽  
Zili Zhang ◽  
Changchun Zhao ◽  
Mengjun Shi ◽  
...  

2021 ◽  
Vol 9 (14) ◽  
pp. 4971-4977
Author(s):  
Mehmet Emin Kilic ◽  
Kwang-Ryeol Lee

Tetrahexagonal AlN: a novel two-dimensional family for photocatalytic water splitting with exceptional mechanical, electronic, and optical properties.


Sign in / Sign up

Export Citation Format

Share Document